Delta breakthrough infections elicit potent, broad and durable neutralizing antibody responses

2021 ◽  
Author(s):  
Alexandra C Walls ◽  
Kaitlin R Sprouse ◽  
Anshu Joshi ◽  
John E Bowen ◽  
Nicholas Franko ◽  
...  

The SARS-CoV-2 Delta variant is currently responsible for most infections worldwide, including among vaccinated individuals. Although these latter infections lead to milder COVID-19 disease relative to unvaccinated subjects, the specificity and durability of antibody responses elicited by Delta breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum binding and neutralizing antibody responses that are markedly more potent, durable and resilient to spike mutations observed in variants than those observed in subjects who were infected only or received only two doses of vaccine. We show that Delta breakthrough cases, subjects who were vaccinated after infection and individuals vaccinated three times (without infection) have serum neutralizing activity of comparable magnitude and breadth, indicating that multiple types of exposure or increased number of exposures to SARS-CoV-2 antigen(s) enhance antibody responses. Neutralization of SARS-CoV, however, was moderate, underscoring the importance of developing vaccines eliciting broad sarbecovirus immunity for pandemic preparedness.

2021 ◽  
Author(s):  
Carolina Garrido ◽  
Jillian H Hurst ◽  
Cynthia G. Lorang ◽  
Jhoanna N. Aquino ◽  
Javier Rodriguez ◽  
...  

As SARS-CoV-2 continues to spread globally, questions have emerged regarding the strength and durability of immune responses in specific populations. In this study, we evaluated humoral immune responses in 69 children and adolescents with asymptomatic or mild symptomatic SARS-CoV-2 infection. We detected robust IgM, IgG, and IgA antibody responses to a broad array of SARS-CoV-2 antigens at the time of acute infection and 2 and 4 months after acute infection in all participants. Notably, these antibody responses were associated with virus neutralizing activity that was still detectable 4 months after acute infection in 94% of children. Moreover, antibody responses and neutralizing activity in sera from children and adolescents were comparable or superior to those observed in sera from 24 adults with mild symptomatic infection. Taken together, these findings indicate children and adolescents with mild or asymptomatic SARS-CoV-2 infection generate robust and durable humoral immune responses that are likely to protect from reinfection.


2021 ◽  
Author(s):  
Hitoshi Kawasuji ◽  
Yoshitomo Morinaga ◽  
Hideki Tani ◽  
Miyuki Kimura ◽  
Hiroshi Yamada ◽  
...  

AbstractIntroductionAdaptive immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dynamics remain largely unknown. The neutralizing antibody (NAb) levels in patients with coronavirus disease 2019 (COVID-19) are helpful for understanding the pathology.Patients and MethodsUsing SARS-CoV-2 pseudotyped virus, serum sample neutralization values in symptomatic COVID-19 patients were measured using the chemiluminescence reduction neutralization test (CRNT). At least two sequential serum samples collected during hospitalization were analyzed to assess NAbs neutralizing activity dynamics at different time points.ResultsOf the 11 patients, four (36.4%), six (54.5%), and one (9.1%) had moderate, severe, and critical disease, respectively. Fifty percent neutralization (N50%-CRNT) was observed upon admission in 90.9% (10/11); all patients acquired neutralizing activity 2–12 days after onset. In patients with moderate disease, neutralization was observed at earliest within two days after symptom onset. In patients with severe-to-critical disease, neutralization activity increased, plateauing 9–16 days after onset. Neutralization activity on admission was significantly higher in patients with moderate disease than in patients with severe-to-critical disease (relative % of infectivity, 6.4% vs. 41.1%; P=.0011).ConclusionsNeutralization activity on admission inversely correlated with disease severity. The rapid NAb response may play a crucial role in preventing the progression of COVID-19.


1998 ◽  
Vol 72 (11) ◽  
pp. 9092-9100 ◽  
Author(s):  
J. F. L. Richmond ◽  
S. Lu ◽  
J. C. Santoro ◽  
J. Weng ◽  
Shiu-Lok Hu ◽  
...  

ABSTRACT DNA vaccination is an effective means of eliciting strong antibody responses to a number of viral antigens. However, DNA immunization alone has not generated persistent, high-titer antibody and neutralizing antibody responses to human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env). We have previously reported that DNA-primed anti-Env antibody responses can be augmented by boosting with Env-expressing recombinant vaccinia viruses. We report here that recombinant Env protein provides a more effective boost of DNA-initiated antibody responses. In rabbits primed with Env-expressing plasmids, protein boosting increased titer, persistence, neutralizing activity, and avidity of anti-Env responses. While titers increased rapidly after boosting, avidity and neutralizing activity matured more slowly over a 6-month period following protein boosting. DNA priming and protein immunization with HIV-1 HXB-2 Env elicited neutralizing antibody for T cell line-adapted, but not primary isolate, viruses. The most effective neutralizing antibody responses were observed after priming with plasmids which expressed noninfectious virus-like particles. In contrast to immunizations with HIV-1 Env, DNA immunizations with the influenza virus hemagglutinin glycoprotein did not require a protein boost to achieve high-titer antibody with good avidity and persistence.


2021 ◽  
Author(s):  
Venkata-Viswanadh Edara ◽  
Kelly E Manning ◽  
Madison Ellis ◽  
Lilin Lai ◽  
Kathryn M Moore ◽  
...  

The BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines generate potent neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the global emergence of SARS-CoV-2 variants with mutations in the spike protein, the principal antigenic target of these vaccines, has raised concerns over the neutralizing activity of vaccine-induced antibody responses. The Omicron variant, which emerged in November 2021, consists of over 30 mutations within the spike protein. Here, we used an authentic live virus neutralization assay to examine the neutralizing activity of the SARS-CoV-2 Omicron variant against mRNA vaccine-induced antibody responses. Following the 2nd dose, we observed a 30-fold reduction in neutralizing activity against the omicron variant. Through six months after the 2nd dose, none of the sera from naive vaccinated subjects showed neutralizing activity against the Omicron variant. In contrast, recovered vaccinated individuals showed a 22-fold reduction with more than half of the subjects retaining neutralizing antibody responses. Following a booster shot (3rd dose), we observed a 14-fold reduction in neutralizing activity against the omicron variant and over 90% of boosted subjects showed neutralizing activity against the omicron variant. These findings show that a 3rd dose is required to provide robust neutralizing antibody responses against the Omicron variant.


2012 ◽  
Vol 19 (6) ◽  
pp. 909-913 ◽  
Author(s):  
Sunil K. Pati ◽  
Zdenek Novak ◽  
Misty Purser ◽  
Nitin Arora ◽  
Michael Mach ◽  
...  

ABSTRACTThe human cytomegalovirus (HCMV) gM-gN complex is a major target of virus-neutralizing activity, and gN subtypes induce strain-specific antibodies. However, the biological significance of HCMV gN polymorphisms is not known. Neutralizing antibody responses against HCMV gN recombinant viruses were investigated at study entry in 80 healthy HCMV-seropositive women who were monitored for the appearance of new antibody specificities against linear strain-specific epitopes on glycoproteins gH and gB as evidence of HCMV reinfection. Neutralizing activity against all four gN recombinant viruses was seen in 74% of subjects, and 61% of subjects had strain-specific responses. Significantly fewer women (9/39 subjects [23%]) with serological evidence of reinfection had strain-specific neutralizing responses than the women without reinfection (21/41 subjects [51%]). Women with antibodies against at least one of the four linear gB and gH antigens at study entry had higher neutralizing titers against gN-1 (P= 0.006) and gN-2 (P= 0.007). Neutralizing titers of ≥400 against gN-3 (P= 0.043) and gN-4 (P= 0.049) at study entry were associated with longer times to serological evidence of reinfection. The findings demonstrate that HCMV gN elicits strain-specific neutralizing antibody responses and that broader anti-gN neutralizing activity may provide some protection from reinfection with a different virus strain.


2021 ◽  
Author(s):  
Yang Yang ◽  
Minghui Yang ◽  
Yun Peng ◽  
Yanhua Liang ◽  
Jinli Wei ◽  
...  

Elucidation the kinetics of neutralizing antibody response in the coronavirus disease 2019 (COVID-19) convalescents is crucial for the future control of the COVID-19 pandemic and vaccination strategies. Here we tested 411 sequential plasma samples collected up to 480 days post symptoms onset (d.a.o) from 214 convalescents of COVID-19 across clinical spectrum without re-exposure history after recovery and vaccination of SARS-CoV-2, using authentic SARS-CoV-2 microneutralization (MN) assays. COVID-19 convalescents free of re-exposure and vaccination could maintain relatively stable anti-RBD IgG and MN titers during 400~480 d.a.o after the peak at around 120 d.a.o and the subsequent decrease. Undetectable neutralizing activity started to occur in mild and asymptomatic infections during 330 to 480 d.a.o with an overall rate of 14.29% and up to 50% for the asymptomatic infections. Significant decline in MN titers was found in 91.67% COVID-19 convalescents with ≥ 50% decrease in MN titers when comparing the available peak and current MN titers (≥ 300 d.a.o). Antibody-dependent immunity could also provide protection against most of circulating variants after one year, while significantly decreased neutralizing activities against the Beta, Delta and Lambda variants were found in most of individuals. In summary, our results indicated that neutralizing antibody responses could last at least 480 days in most COVID-19 convalescents despite of the obvious decline of neutralizing activity, while the up to 50% undetectable neutralizing activity in the asymptomatic infections is of great concern.


2021 ◽  
Author(s):  
Thomas Lechmere ◽  
Luke B Snell ◽  
Carl Graham ◽  
Jeffrey Seow ◽  
Zayed A. Shalim ◽  
...  

Numerous studies have shown that a prior SARS–CoV–2 infection can greatly enhance the antibody response to COVID–19 vaccination, with this so called ′hybrid immunity′ leading to greater neutralization breadth against SARS–CoV–2 variants of concern. However, little is known about how breakthrough infection (BTI) in COVID–19 vaccinated individuals will impact the magnitude and breadth of the neutralizing antibody response. Here, we compared neutralizing antibody responses between unvaccinated and COVID–19 vaccinated individuals (including both AZD1222 and BNT162b2 vaccinees) who have been infected with the delta (B.1.617.2) variant. Rapid production of Spike-reactive IgG was observed in the vaccinated group providing evidence of effective vaccine priming. Overall, potent cross-neutralizing activity against current SARS–CoV–2 variants of concern was observed in the BTI group compared to the infection group. This study provides important insights into population immunity where transmission levels remain high.


Author(s):  
Abigail E. Powell ◽  
Kaiming Zhang ◽  
Mrinmoy Sanyal ◽  
Shaogeng Tang ◽  
Payton A. Weidenbacher ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 239
Author(s):  
Christopher A. Gonelli ◽  
Hannah A. D. King ◽  
Charlene Mackenzie ◽  
Secondo Sonza ◽  
Rob J. Center ◽  
...  

An optimal prophylactic vaccine to prevent human immunodeficiency virus (HIV-1) transmission should elicit protective antibody responses against the HIV-1 envelope glycoprotein (Env). Replication-incompetent HIV-1 virus-like particles (VLPs) offer the opportunity to present virion-associated Env with a native-like structure during vaccination that closely resembles that encountered on infectious virus. Here, we optimized the incorporation of Env into previously designed mature-form VLPs (mVLPs) and assessed their immunogenicity in mice. The incorporation of Env into mVLPs was increased by replacing the Env transmembrane and cytoplasmic tail domains with those of influenza haemagglutinin (HA-TMCT). Furthermore, Env was stabilized on the VLP surface by introducing an interchain disulfide and proline substitution (SOSIP) mutations typically employed to stabilize soluble Env trimers. The resulting mVLPs efficiently presented neutralizing antibody epitopes while minimizing exposure of non-neutralizing antibody sites. Vaccination of mice with mVLPs elicited a broader range of Env-specific antibody isotypes than Env presented on immature VLPs or extracellular vesicles. The mVLPs bearing HA-TMCT-modified Env consistently induced anti-Env antibody responses that mediated modest neutralization activity. These mVLPs are potentially useful immunogens for eliciting neutralizing antibody responses that target native Env epitopes on infectious HIV-1 virions.


Sign in / Sign up

Export Citation Format

Share Document