scholarly journals Synthetic Condensed-Phase Signaling Expands Kinase Specificity and Responds to Macromolecular Crowding

2021 ◽  
Author(s):  
Dajun Sang ◽  
Tong Shu ◽  
Liam J. Holt

AbstractLiquid–liquid phase separation (LLPS) can concentrate biomolecules and accelerate reactions within membraneless organelles. For example, the nucleolus and PML-nuclear bodies are thought to create network hubs by bringing signaling molecules such as kinases and substrates together. However, the mechanisms and principles connecting mesoscale organization to signaling dynamics are difficult to dissect due to the pleiotropic effects associated with disrupting endogenous condensates. Here, we recruited multiple distinct kinases and substrates into synthetic LLPS systems to create new phosphorylation reactions within condensates, and generally found increased activity and broadened specificity. Dynamic phosphorylation within condensates could drive cell-cycle-dependent localization changes. Detailed comparison of phosphorylation of clients with varying recruitment valency and affinity into condensates comprised of either flexible or rigid scaffolds revealed unexpected principles. First, high client concentration within condensates is important, but is not the main factor for efficient multi-site phosphorylation. Rather, the availability of a large number of excess client binding sites, together with a flexible scaffold is crucial. Finally, phosphorylation within a suboptimal, flexible condensate was modulated by changes in macromolecular crowding. Thus, condensates readily generate new signaling connections and can create sensors that respond to perturbations to the biophysical properties of the cytoplasm.

2013 ◽  
Vol 13 (6) ◽  
pp. 665-677 ◽  
Author(s):  
Marina Lusic ◽  
Bruna Marini ◽  
Hashim Ali ◽  
Bojana Lucic ◽  
Roberto Luzzati ◽  
...  

2004 ◽  
Vol 32 (6) ◽  
pp. 920-923 ◽  
Author(s):  
R. Waldron ◽  
T. Moore

The mouse jerky gene and its human orthologue, JRK/JH8, encode a putative DNA-binding protein with homology to the CENP-B (centromere-binding protein B). Disruption of the mouse jerky gene by transgene insertion causes generalized recurrent seizures reminiscent of human idiopathic generalized epilepsy. In addition (and similar to a cenp-b null mouse) jerky null mice exhibit postnatal weight loss and reduced fertility. Using fluorescence confocal microscopy, the cellular localization of a JRK–GFP fusion (where GFP stands for green fluorescent protein) was investigated in HeLa cells. JRK–GFP has a dynamic expression pattern in the interphase nucleus, localizing in a small number of punctate nuclear foci and in the nucleolus. The JRK–GFP foci number changes during the cell cycle, but a distinct pattern of three JRK–GFP foci is observed at G2. The endogenous protein behaves in a similar manner to the GFP-fusion protein. JRK–GFP was found to co-localize with CREST antigens (which recognize the centromere-binding proteins, CENP-A, -B and -C) through S and G2 phases of interphase and co-localized completely with a subset of PML nuclear bodies at G2. We speculate that JRK protein associates with a specific chromosomal centromeric locus in G2, where it associates fully with PML bodies. Research is underway to identify this locus.


2010 ◽  
Vol 84 (23) ◽  
pp. 12210-12225 ◽  
Author(s):  
Mario A. Pennella ◽  
Yue Liu ◽  
Jennifer L. Woo ◽  
Chongwoo A. Kim ◽  
Arnold J. Berk

ABSTRACT Oncogenic transformation by adenovirus E1A and E1B-55K requires E1B-55K inhibition of p53 activity to prevent E1A-induced apoptosis. During viral infection, E1B-55K and E4orf6 substitute for the substrate-binding subunits of the host cell cullin 5 class of ubiquitin ligases, resulting in p53 polyubiquitinylation and proteasomal degradation. Here we show that E1B-55K alone also functions as an E3 SUMO1-p53 ligase. Fluorescence microscopy studies showed that E1B-55K alone, in the absence of other viral proteins, causes p53 to colocalize with E1B-55K in promyelocytic leukemia (PML) nuclear bodies, nuclear domains with a high concentration of sumoylated proteins. Photobleaching experiments with live cells revealed that E1B-55K tethering of p53 in PML nuclear bodies decreases the in vivo nuclear mobility of p53 nearly 2 orders of magnitude. E1B-55K-induced p53 sumoylation contributes to maximal inhibition of p53 function since mutation of the major p53 sumoylation site decreases E1B-55K-induced p53 sumoylation, tethering in PML nuclear bodies, and E1B-55K inhibition of p53 activity. Mutation of the E1B-55K sumoylation site greatly inhibits E1B-55K association with PML nuclear bodies and the p53 nuclear export to cytoplasmic aggresomes observed in E1A-E1B-transformed cells. Purified E1B-55K and p53 form high-molecular-weight complexes potentially through the formation of a network of E1B-55K dimers bound to the N termini of p53 tetramers. In support of this model, a p53 mutation that prevents tetramer formation greatly reduces E1B-55K-induced tethering in PML nuclear bodies and p53 nuclear export. These data indicate that E1B-55K's association with PML nuclear bodies inactivates p53 by first sequestering it in PML nuclear bodies and then greatly facilitating its nuclear export.


Oncogene ◽  
2004 ◽  
Vol 23 (16) ◽  
pp. 2819-2824 ◽  
Author(s):  
Yuki Takahashi ◽  
Valérie Lallemand-Breitenbach ◽  
Jun Zhu ◽  
Hugues de Thé

2008 ◽  
Vol 121 (24) ◽  
pp. 4106-4113 ◽  
Author(s):  
E. Evdokimov ◽  
P. Sharma ◽  
S. J. Lockett ◽  
M. Lualdi ◽  
M. R. Kuehn

Sign in / Sign up

Export Citation Format

Share Document