fluorescence confocal microscopy
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 61)

H-INDEX

29
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Jing Zhou ◽  
Tianxiang Wu ◽  
Liang Zhu ◽  
Yifei Li ◽  
Liying Chen ◽  
...  

Benefiting from low scatter of NIR-II light in biological tissues and high spatial resolution of confocal microscopy, NIR-II fluorescence confocal microscopy has been developed recently and achieve deep imaging in vivo. However, independence of excitation point and detection point makes this system difficult to be adjusted. New, improved, self-confocal NIR-II fluorescence confocal systems are created in this work. Based on a shared pinhole for excitation light and fluorescence, the system is easy and controlled to be adjusted. The fiber-pinhole confocal system is constructed for cerebrovascular and hepatocellular NIR-II fluorescence intensity imaging. The air-pinhole confocal system is constructed for cerebrovascular NIR-II fluorescence intensity imaging, hepatic NIR-II fluorescence lifetime imaging, and hepatic multiphoton imaging.


2021 ◽  
Author(s):  
Xavier Castellvi Corrons ◽  
Jeremie Gummel ◽  
Johan Smets ◽  
Debora Berti

The liquid-liquid phase separation (LLPS) of amphiphilic thermoresponsive copolymers can lead to the formation of micron-sized domains, known as simple coacervates. Due to their potential to confine active principles, these copolymer-rich droplets have gained interest as encapsulating agents. Understanding and controlling the conditions inducing this LLPS is therefore essential for applicative purposes and requires thorough fundamental studies on self-coacervation. In this work, we investigate the LLPS of a comb-like graft copolymer (PEG-g-PVAc) consisting of a poly(ethylene glycol) backbone (6 kDa) with 2-3 grafted poly(vinyl acetate) chains, and a PEG/PVAc weight ratio of 40/60. Specifically, we report the effect of various water-soluble additives on its phase separation behavior. Kosmotropes and non-ionic surfactants were found to decrease the phase separation temperature of the copolymer, while chaotropes and, above all, ionic surfactants increased it. We then focus on the phase behavior of PEG-g-PVAc in the presence of sodium citrate and a C14-15 E7 non-ionic surfactant (N45-7), defining the compositional range for the generation of LLPS microdomains at room temperature and monitoring their formation with fluorescence confocal microscopy. Finally, we determine the composition of the microdomains through confocal Raman microscopy, demonstrating the presence of PEG-g-PVAc, N45-7, and water. These results expand our knowledge on polymeric self-coacervation, clarifying the optimal conditions and composition needed to obtain LLPS microdomains with encapsulation potential at room temperature in surfactant-rich formulations.


2021 ◽  
Author(s):  
Maja Carina Nackenhorst ◽  
Mohammad Kasiri ◽  
Bernd Gollackner ◽  
Heinz Regele

Abstract Background: Rapid histologic diagnosis of frozen sections is essential for a variety of surgical procedures. Frozen sections however, require specialized lab equipment, are prone to freezing artifacts and are not applicable to all types of tissue. Adipose tissue is especially difficult to process in frozen sections. Although these limitations are well known, no alternative method for microscopic tissue analysis that might replace frozen sections could be established. Our objective was to evaluate whether tissue imaging based on ex vivo fluorescent confocal microscopy (FCM) is applicable for rapid microscopic assessment of breast tumors specimens with abundant adipose tissue.Methods: We evaluated 17 tissue samples from mastectomy specimens, rich in adipose tissue, submitted to the department of pathology at the Medical University of Vienna. We conducted our study on the FCM VivaScope® 2500M-G4 (Mavig GmbH, Munich, Germany; Caliber I.D.; Rochester NY, USA).Results: When comparing FCM to frozen sections, we found a very similar overall processing time for FCM images and frozen sections respectively. Image quality was mostly superior to frozen sections (especially for adipose tissue and nuclear detail) but inferior to H&E stained FFPE sections. Limitations of the technology were uneven coloring, invisibility of ink applied for marking tissue margins and distortion artifacts if too much pressure is applied to the tissue. Conclusion: FCM has the potential to expand the application and usefulness of rapid tissue analysis as speed is comparable and quality exceeds that of frozen sections especially in tissues rich in adipose cells such as breast specimen.


Author(s):  
Nilanjana Deb ◽  
Tarun Jha ◽  
Snehasikta Swarnakar ◽  
Shila Elizabeth Besra

The present work aimed to investigate the apoptosis activity of Diospyros melanoxylon of bark extract (DMBE) on Molt-3 human acute T lymphoblastic leukemia cell line & RAW 264.7 murine macrophage cell lysate respectively. Cell growth inhibition was observed by using MTT assay. DMBE significantly decreased cell count and caused apoptosis, as confirmed by light, fluorescence, confocal microscopy and by flow-cytometric analysis using Annexin-V FITC and propidium iodide (PI). MOLT-3 cells showed DMBE induced cell cycle arrest, and apoptosis was mediated through mitochondrial intrinsic pathway involving the release of cytochrome c into the cytosol and activation of caspase-9 and caspase-3. DMBE induced changes in cellular ROS production upon stimulation with DCFDA.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5685
Author(s):  
Ulf Titze ◽  
Torsten Hansen ◽  
Christoph Brochhausen ◽  
Barbara Titze ◽  
Birte Schulz ◽  
...  

Background: Fluorescence confocal microscopy (FCM) is a novel micro-imaging technique providing optical sections of examined tissue. The method has been well established for the diagnosis of tumors in dermatological specimens. Methods: We compare intraoperative diagnoses of the real-time application of FCM in pre-therapeutic prostate biopsies (35 patients, total number of biopsy specimens: n = 438) with the findings of conventional histology. Results: Prostate carcinoma was reliably diagnosed in all patients. Depending on scan quality and experience of the examiner, smaller lesions of well differentiated carcinoma (ISUP1) could not be consistently differentiated from reactive changes. Furthermore, in some cases there was difficulty to distinguish ISUP grade 2 from ISUP grade 1 tumors. ISUP grades 3–5 were reliably detected in FCM. Conclusion: Despite some limitations, FCM seems to be an effective tool for the timely assessment of prostate biopsies enabling reliable diagnosis of prostate cancer in patients requiring therapy.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2909
Author(s):  
Judit Oláh ◽  
Attila Lehotzky ◽  
Tibor Szénási ◽  
Judit Ovádi

DJ-1, a multi-functional protein with antioxidant properties, protects dopaminergic neurons against Parkinson’s disease (PD). The oligomerization/assembly of alpha-synuclein (SYN), promoted by Tubulin Polymerization Promoting Protein (TPPP/p25), is fatal in the early stage of PD. The pathological assembly of SYN with TPPP/p25 inhibits their proteolytic degradation. In this work, we identified DJ-1 as a new interactive partner of TPPP/p25, and revealed its influence on the association of TPPP/p25 with SYN. DJ-1 did not affect the TPPP/p25-derived tubulin polymerization; however, it did impede the toxic assembly of TPPP/p25 with SYN. The interaction of DJ-1 with TPPP/p25 was visualized in living human cells by fluorescence confocal microscopy coupled with Bifunctional Fluorescence Complementation (BiFC). While the transfected DJ-1 displayed homogeneous intracellular distribution, the TPPP/p25-DJ-1 complex was aligned along the microtubule network. The anti-aggregative effect of DJ-1 on the pathological TPPP/p25-SYN assemblies was established by the decrease in the intensity of their intracellular fluorescence (BiFC signal) and the increase in the proteolytic degradation of SYN complexed with TPPP/p25 due to the DJ-1-derived disassembly of SYN with TPPP/p25. These data obtained with HeLa and SH-SY5Y cells revealed the protective effect of DJ-1 against toxic SYN assemblies, which assigns a new function to the antioxidant sensor DJ-1.


Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1207
Author(s):  
Malwina Brożyna ◽  
Justyna Paleczny ◽  
Weronika Kozłowska ◽  
Grzegorz Chodaczek ◽  
Ruth Dudek-Wicher ◽  
...  

The high resistance of staphylococcal biofilm against antibiotics and developing resistance against antiseptics induces a search for novel antimicrobial compounds. Due to acknowledged and/or alleged antimicrobial activity of EOs, their application seems to be a promising direction to follow. Nevertheless, the high complexity of EOs composition and differences in laboratory protocols of the antimicrobial activity assessment hinders the exact estimation of EOs effectiveness. To overcome these disadvantages, in the present work we analysed the effectiveness of volatile and liquid forms of seven EOs (derived from thyme, tea tree, basil, rosemary, eucalyptus, lavender, and menthol mint) against 16 staphylococcal biofilm-forming strains using cohesive set of in vitro techniques, including gas chromatography–mass spectrometry, inverted Petri dish, modified disk-diffusion assay, microdilution techniques, antibiofilm dressing activity measurement, AntiBioVol protocol, fluorescence/confocal microscopy, and dynamic light scattering. Depending on the requirements of the technique, EOs were applied in emulsified or non-emulsified form. The obtained results revealed that application of different in vitro techniques allows us to get a comprehensive set of data and to gain insight into the analysed phenomena. In the course of our investigation, liquid and volatile fractions of thyme EO displayed the highest antibiofilm activity. Liquid fractions of rosemary oil were the second most active against S. aureus. Vapour phases of tea tree and lavender oils exhibited the weakest anti-staphylococcal activity. The size of emulsified droplets was the lowest for T-EO and the highest for L-EO. Bearing in mind the limitations of the in vitro study, results from presented analysis may be of pivotal meaning for the potential application of thymol as a antimicrobial agent used to fight against staphylococcal biofilm-based infections.


Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 923
Author(s):  
Jesus Pérez-Hernández ◽  
Clarisa Retana-González ◽  
Espiridión Ramos-Martínez ◽  
José Cruz-Colín ◽  
Andrés Saralegui-Amaro ◽  
...  

Amoebiasis in humans is caused by the protozoan parasite Entamoeba histolytica, which cytotoxic activity has been demonstrated on a wide variety of target cells. The process involves the adherence of the parasite to the cell, and such adherence is mediated by an amoebic surface lectin, known as Gal/GalNAc lectin. It is composed of heavy, intermediate, and light subunits. The carbohydrate recognition domain (CRD) has been identified within a cysteine-rich region in the lectin heavy subunit and has an amino acid sequence identity to the receptor-binding domain of hepatocyte growth factor (HGF). Recombinant CRD has been previously shown to compete with HGF for binding to the c-Met receptor IgG fusion protein. In the present study, we searched for evidence of interaction between the Gal/GalNAc lectin at the surface of trophozoites with the c-Met receptor expressed at the surface of HepG2 in coculture assays. Immunoprecipitation of the coculture lysate indicated interaction of the c-Met with a 60 kDa peptide recognized by antiamoebic lectin antibody. Colocalization of both molecules was detected by fluorescence confocal microscopy. Incubation of HepG2 cells with HGF before coculture with trophozoites prevents the cytotoxic effect caused by the parasites but not their adherence to the cells. Our results point to Gal/GalNAc lectin as a ligand of the c-Met receptor at the surface of HepG2 cells.


Sign in / Sign up

Export Citation Format

Share Document