kinase specificity
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 10)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Dajun Sang ◽  
Tong Shu ◽  
Liam J. Holt

AbstractLiquid–liquid phase separation (LLPS) can concentrate biomolecules and accelerate reactions within membraneless organelles. For example, the nucleolus and PML-nuclear bodies are thought to create network hubs by bringing signaling molecules such as kinases and substrates together. However, the mechanisms and principles connecting mesoscale organization to signaling dynamics are difficult to dissect due to the pleiotropic effects associated with disrupting endogenous condensates. Here, we recruited multiple distinct kinases and substrates into synthetic LLPS systems to create new phosphorylation reactions within condensates, and generally found increased activity and broadened specificity. Dynamic phosphorylation within condensates could drive cell-cycle-dependent localization changes. Detailed comparison of phosphorylation of clients with varying recruitment valency and affinity into condensates comprised of either flexible or rigid scaffolds revealed unexpected principles. First, high client concentration within condensates is important, but is not the main factor for efficient multi-site phosphorylation. Rather, the availability of a large number of excess client binding sites, together with a flexible scaffold is crucial. Finally, phosphorylation within a suboptimal, flexible condensate was modulated by changes in macromolecular crowding. Thus, condensates readily generate new signaling connections and can create sensors that respond to perturbations to the biophysical properties of the cytoplasm.


2021 ◽  
Author(s):  
Brandon M. Invergo

AbstractPhosphoproteomic experiments routinely observe thousands of phosphorylation sites. To understand the intracellular signaling processes that generated this data, one or more causal protein kinases must be assigned to each phosphosite. However, limited knowledge of kinase specificity typically restricts assignments to a small subset of a kinome. Utilizing simple machine-learning methods on data from high-throughput, in vitro kinase-substrate assays, I have developed an approach to high-coverage, multi-label kinase-substrate assignment called IV-KAPhE (“In vivo-Kinase Assignment for Phosphorylation Evidence”). Tested on human data, IV-KAPhE outperforms other methods of similar scope. Such computational methods generally predict a densely connected kinase-substrate network, with most sites targeted by multiple kinases, pointing either to unaccounted-for biochemical constraints or significant cross-talk and signaling redundancy. Finally, I show that such predictions can potentially identify biased kinase-site misannotations within families of closely related kinase isoforms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yao Chen ◽  
Bernardo L. Sabatini

G-protein-coupled-receptor (GPCR) signaling is exquisitely controlled to achieve spatial and temporal specificity. The endogenous protein kinase inhibitor peptide (PKI) confines the spatial and temporal spread of the activity of protein kinase A (PKA), which integrates inputs from three major types of GPCRs. Despite its wide usage as a pharmaceutical inhibitor of PKA, it was unclear whether PKI only inhibits PKA activity. Here, the effects of PKI on 55 mouse kinases were tested in in vitro assays. We found that in addition to inhibiting PKA activity, both PKI (6–22) amide and full-length PKIα facilitated the activation of multiple isoforms of protein kinase C (PKC), albeit at much higher concentrations than necessary to inhibit PKA. Thus, our results call for appropriate interpretation of experimental results using PKI as a pharmaceutical agent. Furthermore, our study lays the foundation to explore the potential functions of PKI in regulating PKC activity and in coordinating PKC and PKA activities.


2020 ◽  
Author(s):  
Yao Chen ◽  
Bernardo L. Sabatini

AbstractG-protein-coupled-receptor (GPCR) signaling is exquisitely controlled to achieve spatial and temporal specificity. The endogenous protein kinase inhibitor peptide (PKI) confines the spatial and temporal spread of the activity of protein kinase A (PKA), which integrates inputs from three major types of GPCRs. Despite its wide usage as a pharmaceutical inhibitor of PKA, it was unclear whether PKI only inhibits PKA activity. Here, the effects of PKI on 55 mouse kinases were tested in in vitro assays. We found that in addition to inhibiting PKA activity, both PKI (6-22) amide and full-length PKIα facilitated the activation of multiple isoforms of protein kinase C (PKC), albeit at much higher concentrations than necessary to inhibit PKA. Thus, our results call for appropriate interpretation of experimental results using PKI as a pharmaceutical agent. Furthermore, our study lays the foundation to explore the potential functions of PKI in regulating PKC activity and in coordinating PKC and PKA activities.


2020 ◽  
Vol 117 (35) ◽  
pp. 21413-21419 ◽  
Author(s):  
Mateusz Dyla ◽  
Magnus Kjaergaard

Kinase specificity is crucial to the fidelity of signaling pathways, yet many pathways use the same kinases to achieve widely different effects. Specificity arises in part from the enzymatic domain but also from the physical tethering of kinases to their substrates. Such tethering can occur via protein interaction domains in the kinase or via anchoring and scaffolding proteins and can drastically increase the kinetics of phosphorylation. However, we do not know how such intracomplex reactions depend on the link between enzyme and substrate. Here we show that the kinetics of tethered kinases follow a Michaelis–Menten-like dependence on effective concentration. We find that phosphorylation kinetics scale with the length of the intrinsically disordered linkers that join the enzyme and substrate but that the scaling differs between substrates. Steady-state kinetics can only partially predict rates of tethered reactions as product release may obscure the rate of phosphotransfer. Our results suggest that changes in signaling complex architecture not only enhance the rates of phosphorylation reactions but may also alter the relative substrate usage. This suggests a mechanism for how scaffolding proteins can allosterically modify the output from a signaling pathway.


2020 ◽  
Vol 15 (8) ◽  
pp. 2259-2272
Author(s):  
Mukesh Kumar Venkat Ramani ◽  
Edwin E. Escobar ◽  
Seema Irani ◽  
Joshua E. Mayfield ◽  
Rosamaria Y. Moreno ◽  
...  

Author(s):  
Mateusz Dyla ◽  
Magnus Kjaergaard

AbstractKinase specificity is crucial to the fidelity of signalling pathways, yet many pathways use the same kinases to achieve widely different effects. Specificity arises in part from the enzymatic domain, but also from the physical tethering of kinases to their substrates. Such tethering can occur via protein interaction domains in the kinase or via anchoring and scaffolding proteins, and can drastically increase the kinetics of phosphorylation. However, we do not know how such intra-complex reactions depend on the link between enzyme and substrate. Here we show that the kinetics of tethered kinases follow a Michaelis-Menten like dependence on effective concentration. We find that phosphorylation kinetics scale with the length of the intrinsically disordered linkers that join the enzyme and substrate, but that the scaling differs between substrates. Steady-state kinetics can only partially predict rates of tethered reactions as product release may obscure the rate of phospho-transfer. Our results suggest that changes in signalling complex architecture not only enhance the rates of phosphorylation reactions, but may also alter the relative substrate usage. This suggests a mechanism for how scaffolding proteins can allosterically modify the output from a signalling pathway.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Dajun Sang ◽  
Sudarshan Pinglay ◽  
Rafal P Wiewiora ◽  
Myvizhi E Selvan ◽  
Hua Jane Lou ◽  
...  

Protein kinases are crucial to coordinate cellular decisions and therefore their activities are strictly regulated. Previously we used ancestral reconstruction to determine how CMGC group kinase specificity evolved (Howard et al., 2014). In the present study, we reconstructed ancestral kinases to study the evolution of regulation, from the inferred ancestor of CDKs and MAPKs, to modern ERKs. Kinases switched from high to low autophosphorylation activity at the transition to the inferred ancestor of ERKs 1 and 2. Two synergistic amino acid changes were sufficient to induce this change: shortening of the β3-αC loop and mutation of the gatekeeper residue. Restoring these two mutations to their inferred ancestral state led to a loss of dependence of modern ERKs 1 and 2 on the upstream activating kinase MEK in human cells. Our results shed light on the evolutionary mechanisms that led to the tight regulation of a kinase that is central in development and disease.


2019 ◽  
Author(s):  
Brandon M. Invergo ◽  
Borgthor Petursson ◽  
David Bradley ◽  
Girolamo Giudice ◽  
Evangelia Petsalaki ◽  
...  

SummaryComplex networks of regulatory relationships between protein kinases comprise a major component of intracellular signaling. Although many kinase-kinase regulatory relationships have been described in detail, these are biased towards well-studied kinases while the majority of possible relationships remains unexplored. Here, we implement data-driven, unbiased methods to predict human kinase-kinase regulatory relationships and whether they have activating or inhibiting effects. We incorporate high-throughput data, kinase specificity profiles, and structural information to produce our predictions. The results successfully recapitulate previously annotated regulatory relationships and can reconstruct known signaling pathways from the ground up. The full network of predictions is relatively sparse, with the vast majority of relationships assigned low probabilities. However, it nevertheless suggests denser modes of inter-kinase regulation than normally considered in intracellular signaling research.


Author(s):  
Benoît Souchet ◽  
Mickael Audrain ◽  
Jean Marie Billard ◽  
Julien Dairou ◽  
Romain Fol ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document