scholarly journals Effect of Light Conditions on In Vitro Adventitious Organogenesis of Cucumber Cultivars

2021 ◽  
Author(s):  
Jorge Fonseca Miguel

The response on callus and shoot formation under different light incubation conditions was evaluated in cucumber (Cucumis sativus L.). Four-day-old cotyledon explants from the inbred line 'Wisconsin 2843' and the commercial cultivars 'Marketer' and 'Negrito' were employed. A four-week culture was conducted on MS-derived shoot induction medium containing 0.5 mg L-1 IAA and 2.5 mg L-1 BAP, under an 8-h dark/ 16-h light regime, or by a one- or two-week dark pre-incubation followed by the same photoperiod. Significant differences were obtained for the regeneration of shoots in all cultivars. The response in both frequency and number of shoots under continuous photoperiod was at least 3-6 fold higher than with dark pre-incubation. The highest genotypes response was obtained by 'Negrito' and 'Marketer' with identical values. All explants formed callus, and in two of the three cultivars, the response on callus extension was not significantly affected by incubation conditions. The results clearly show that shoot induction under continuous photoperiod regime was beneficial for adventitious shoot regeneration in cucumber.

2021 ◽  
Author(s):  
Jorge Fonseca Miguel

AbstractThe effects of different concentrations of copper sulfate (0.2 to 5 mg L−1) on in vitro callus and shoot formation of cucumber was investigated. Four-day-old cotyledon explants from the inbred line ‘Wisconsin 2843’ and the commercial cultivars ‘Marketer’ and ‘Negrito’ were used. The results on callus-derived shoots showed that the optimal concentration of CuSO4 added to Murashige & Skoog (MS)-derived shoot induction medium containing 0.5 mg L−1 IAA and 2.5 mg L−1 BAP was 8-200 fold greater than in standard MS medium, and was genotype dependent. The highest genotypes response on shoot frequency and shoot number was achieved in this order by ‘Marketer’, ‘Negrito’ and ‘Wisconsin 2843’ with 1, 0.2 y 5 mg L−1 CuSO4, respectively. The genotype with the lowest control performance demanded the highest concentration of CuSO4 for its optimal morphogenic response - 6- and 10-fold more in shoot frequency and shoot number, respectively. The other cultivars registered a 2-fold increase in both variables. All explants formed callus and the response on callus extension varied among cultivars. The regression analysis showed a statistically significant relationship between shoot number and concentrations of CuSO4 and absence of association with callus extension. The present results indicate that application of specific concentrations of CuSO4 higher than in standard MS medium, increases adventitious cucumber shoot organogenesis.


1982 ◽  
Vol 60 (12) ◽  
pp. 2729-2733 ◽  
Author(s):  
Edward G. Kirby ◽  
Margaretha E. Schalk

Cotyledons of Douglas-fir are triangular in cross section and possess two epistomatic surfaces with centrally located stomatal rows (commonly seven). After 1 week in culture on a medium inducing adventitious shoot formation (5 μM N6-benzylaminopurine and 5 μM α-naphthalene acetic acid (NAA)) or callus proliferation (5 μM NAA) cells of the hypodermal region immediately below the epidermis begin to elongate and divide rupturing the epidermis. Apical domes of adventitiously produced bud primordia emerge from the ruptured epidermis after 14–21 days in culture on shoot induction medium. Emergence of buds takes place preferentially on epistomatic cotyledonary surfaces. The large number of hypodermal cells that respond to shoot induction medium by forming adventitious shoots suggests further investigation of fundamental events associated with morphogenesis in cotyledon cultures of Douglas-fir.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 461d-461
Author(s):  
Richard L. Bell ◽  
Ralph Scorza ◽  
Chinnathambi Srinivasan

An efficient regeneration/transformation system was developed for `Beurre Bosc' pear. Young leaves were harvested from in vitro shoots proliferated on a medium containing MS basal salts and 5 BAP, 0.5 μM IBA, and 0.6M3. Shoot regeneration was optimized using a modification of the medium of Chevreau and Leblay (1993). Explants were cultured on shoot induction medium contained 10 μM TDZ and 1 μM IBA for 4 weeks in the dark, and then transfered to a similar, but auxinless, regeneration medium until shoots developed, usually after an additional 4 to 8 weeks. Leaf tissues were transformed by co-cultivation for 3 days with Agrobacterium tumefaciens EHA101 carrying a pGA482 plasmid containing NPTII, GUS, and rolC genes, followed by cultivation on SIM containing 300 mg/L timentin. Putative transgenic plants were selected on shoot induction medium containing 80mg/L kanamycin, and multiplied on shoot proliferation medium. Four clones were confirmed as transgenic using the GUS histochemical assay and Southern blots for the NPTII and rolC genes. Plants of each clone have been rooted and successfully transfered to the greenhouse for further analysis of gene expression.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Iyyakkannu Sivanesan ◽  
Byoung Ryong Jeong

We investigated the effect of Si concentration on shoot regeneration and salinity tolerance ofAjuga multiflora. Addition of Si to the shoot induction medium significantly increased the frequency of shoot induction. The average number of shoots regenerated per explant decreased on the medium containing NaCl alone, while there was less decrease when the shoot induction medium was supplemented with both NaCl and Si. The shoot induction percentage increased linearly with increasing concentration of Si in the NaCl containing medium. Addition of Si to the shoot induction medium significantly increased SOD, POD, APX, and CAT activity in regenerated shoot buds as compared with the control. The inclusion of Si to the NaCl containing medium significantly increased the SOD activity in leaves and roots, while it decreased POD, APX, and CAT activity in both organs. Scanning electron microscopic analysis showed that there are no distinct differences in the structure of stomata between the control and Si-treated plants. However, NaCl treatment significantly affected the structure and number of stomata as compared to the control. Wavelength dispersive X-ray analysis confirmed the high Si deposition in trichomes of plants grown in the Si containing medium but not in plants grown in the medium without Si.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 560c-560
Author(s):  
Yong Cheong Koh ◽  
Fred T. Davies

The leaves of vegetative stolons of greenhouse grown Cryptanthus `Marian Oppenheimer' (wide leaf clone) were cultured in modified MS media to induce adventitious shoot formation via callus formation. The best callus induction medium was basal MS medium with 10 μM NAA, IBA and BA. Pure green (843), maroon (3), striped (2) and albino plantlets were obtained. Most of the albino plantlets were stunted, tightly clumped together and impossible to score. The medium which produced the highest average number of non-albino plantlets was basal MS medium with 0.3 μM NAA, IBA and BA All non-albino plantlets were rooted in MS medium with 5.4 μM NAA and transplanted ex vitro with a survival rate of 96.7%. The maroon plantlets became green two weeks after transplanting. Histological studies revealed that C. `Marian Oppenheimer' (wide leaf clone) has two tunicas (L1 and L2) and a corpus (L3). Callus on the leaf explant arose mainly from the L2 and L3. Apparently C. `Marian Oppenheimer' (wide leaf clone) is a GWG periclinal chimera.


HortScience ◽  
2001 ◽  
Vol 36 (6) ◽  
pp. 1102-1106 ◽  
Author(s):  
V.R. Bommineni ◽  
H. Mathews ◽  
S.B. Samuel ◽  
M. Kramer ◽  
D.R. Wagner

Improved in vitro clonal propagation methods are valuable tools for nurseries and growers, and are essential for manipulation and improvement of tree fruit germplasm using the tools and techniques of biotechnology. We have developed a rapid shoot multiplication procedure for clonal propagation of apple, Malus ×domestica cv. Gale Gala and pear, Pyrus communis L. cv. Bartlett. Rapid clonal multiplication was achieved after the following series of steps: pre-conditioning of micropropagated shoots, sectioning pre-treated stems into thin slices, placing slices onto shoot induction medium and incubating directly under cool-white fluorescent lights or after a brief dark incubation. Multiple induction of shoots recovered from stem slice explants within three weeks of culture. A maximum of 37% of cultured apple stem slices, and 97% of pear stem slices, showed induction of shoots. More shoots were recovered on phytagel solidified shoot induction medium than on agar. Cultured stem slices of both apple and pear showed maximum recovery of shoots from shoot induction medium supplemented with thidiazuron (TDZ) compared to medium supplemented with BAP and kinetin. Under ideal conditions, pear stems generated four times the shoots as the same quantity or length of apple shoots. Micropropagated shoots were rooted and transferred to the greenhouse and field nursery for further evaluation. Chemical names used: N-phenyl-N′-1,2,3-thidiazol-5-ylurea (thidiazuron or TDZ); 6-benzylaminopurine (BAP).


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 535B-535
Author(s):  
M.J. Bosela ◽  
J.P. Schnurr ◽  
Z.-M. Cheng ◽  
W.A. Sargent

Three elite hybrid aspen, Populus grandidentata × P. canescens, P. tremuloides × P. tremula, and P. tremuloides × P. davidiana, have been transformed with Agrobacterium tumefaciens strains LBA4404 and EHA105 carrying kanamycin resistance and GUS genes. The leaves of micropropagated shoots were co-cultivated with Agrobacterium for 65 to 72 hr and then transferred to callus-induction medium with 80–120 mg/L kanamycin in the dark. After 2 weeks, the leaves were transferred to shoot-induction medium under 18-hr photoperiod. Regenerated shoots were verified for transformation by histochemical staining and PCR. Transformed shoots rooted and were transplanted to soil. The three hybrid clones differed widely in their medium requirements for regeneration and in their competence for transformation. The leaves of P. grandidentata × P. canescens callused vigorously on a wide variety of media. In a typical transformation experiment, 30% to 60% of infected leaves produced putatively transformed calli (up to 10 calli per leaf). The origin of these calli and the frequency of shoot formation depended on the Agrobacterium strains. The calli from EHA105-infected leaves produced shoots within six weeks of co-cultivation and at high frequencies (70% to 90%). However, the calli from LBA4404-infected leaves produced shoots more slowly and at much lower frequencies (5% to 10%). Delaying selection for 2 weeks was found to lower the transformation frequency. Putatively transformed calli were obtained from P. tremuloides × P. tremula, and P. tremuloides × P. davidiana hybrids at frequencies of only 2% to 3%. The calli regenerated from P. tremuloides × P. davidiana leaves were very small, but they continued to grow upon being transferred to shoot-induction media and have started to produce shoots. The calli from leaves of P. tremuloides × P. tremula were much larger and they produced shoots more quickly. This transformation protocol is currently being used to introduce rooting genes into these hybrids to improve their rooting from hardwood cuttings.


2008 ◽  
Vol 21 (1) ◽  
pp. 43-48
Author(s):  
S. M. H. Kabir ◽  
M. S. Ali ◽  
M. K. Islam

The Experiment was conducted to establish an efficient plant regeneration protocol from hypocotyl sections of soybean. Callus initiation, shoot and root development were observed by using different concentrations and combinations of growth regulators. The best result for callus induction was observed in MS medium supplemented with 1.5 mg/l Kinetin and 2.0 mg/l NAA. The calli were transferred to shoot induction medium. The best shoot induction occurred in the medium containing 3.0 mg/l BAP and 0.5 mg/l NAA. The elongated shoots developed roots on MS medium supplemented with different IBA concentrations where 1.5 mg/l IBA was the best for root development. Plantlets with a well developed root system were transplanted in plastic container with a soil mixture of cowdung and fine sand. Plantlet survival rate was 70%. Through this experiment, a general suitable regeneration protocol from hypocotyls of soybean has been developed which can potentially be used for micropropagation and future transformation research in soybean.DOI: http://dx.doi.org/10.3329/bjpbg.v21i1.17049


Author(s):  
Vi Thi Tuong Nguyen ◽  
Trinh Le Diem Ho ◽  
Kim Thi A Phan

Codonopsis javania (Blume) Hook.f. et Thomson a traditional medicine plant and now an endangered species in Vietnam is grown for roots. The research was carried out to establish the plant propagation for the purpose of concerving and exploting this endangered medicinal herbs. In vitro shoot tip explants (1 – 1.5 cm) were induced to form callus on MS medium containing NAA (0.5 – 2 mg /L) with TDZ 0.1 mg/L. After four weeks of culture, in the MS medium combine with NAA 1 mg/L and TDZ 0.1 mg/L the explant induced compact callus (green, solid) wsa achieved 85.33%. The callus induction to form shoots on medium MS containing BA (0.5 – 2.0 mg/L) with NAA 0.2 mg/L. After 4 weeks of culture, shoot formation was higher in the MS medium containing BA 1.0 mg /L and NAA 0.2 mg/L and achieved of 82.67 % with 9.92 shoots/explant. The best shoot proliferation (2 – 3 cm) was excised and transferred to a medium shoot multiplication with the same composition as the shoot induction medium in which NAA 0.2 mg/L was replaced by NAA 0.5 mg/L. When compared the shoot multiplication between the two mediums at the same BA concentration (2 mg/L), all shoots increased and reached 5.87 times after 60 days cultured. On rooting MS medium with IBA 1 mg/L, 88.67 % in vitro rooting was observed with the average root yield of 4.33 roots/shoot and the length of 8.27 cm. Root length and their yield quality were highly improved when using of coconut fiber (30 %) and earthworms compost (70 %) (v/v) in the transfer medium after acclimatisation stages.


2012 ◽  
Vol 43 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Roberson Dibax ◽  
Giovana Bomfim de Alcantara ◽  
Marília Pereira Machado ◽  
João Carlos Bespalhok Filho ◽  
Ricardo Augusto de Oliveira

The objectives of this study were to establish appropriate conditions for obtaining plant regeneration and acclimatization of the 'RB92579' and 'RB93509' sugarcane cultivars and to elucidate the shoots origin through histological analysis. For both cultivars, obtaining shoots showed better results with the culture of explants on a callus induction medium containing 2.0mg L-1 2,4-dichlorophenoxyacetic acid, followed by cultivation on a shoot induction medium containing 0.1mg L-1 kinetin and 0.2mg L-1 benzilaminopurine. The MS medium without growth regulators proved to be appropriate for elongation and rooting of shoots and the use of the composed substrate of vermiculite + MS salts was effective for acclimatization. Histological analysis revealed that the origin of the shoots in both cultivars occurred through indirect organogenesis.


Sign in / Sign up

Export Citation Format

Share Document