scholarly journals Sex-specific topology of the nociceptive circuit shapes dimorphic behavior in C. elegans

2021 ◽  
Author(s):  
Vladyslava Pechuk ◽  
Gal Goldman ◽  
Yehuda Salzberg ◽  
Aditi H Chaubey ◽  
R Aaron Bola ◽  
...  

How sexually dimorphic behavior is encoded in the nervous system is poorly understood. Here, we characterize the dimorphic nociceptive behavior in C. elegans and study the underlying circuits, which are composed of the same neurons but are wired differently. We show that while sensory transduction is similar in the two sexes, the downstream network topology markedly shapes behavior. We fit a network model that replicates the observed dimorphic behavior in response to external stimuli, and use it to predict simple network rewirings that would switch the behavior between the sexes. We then show experimentally that these subtle synaptic rewirings indeed flip behavior. Strikingly, when presented with aversive cues, rewired males were compromised in finding mating partners, suggesting that network topologies that enable efficient avoidance of noxious cues have a reproductive "cost". Our results present a deconstruction of the design of a neural circuit that controls sexual behavior, and how to reprogram it.

2021 ◽  
Vol 11 (3) ◽  
pp. 1241
Author(s):  
Sergio D. Saldarriaga-Zuluaga ◽  
Jesús M. López-Lezama ◽  
Nicolás Muñoz-Galeano

Microgrids constitute complex systems that integrate distributed generation (DG) and feature different operational modes. The optimal coordination of directional over-current relays (DOCRs) in microgrids is a challenging task, especially if topology changes are taken into account. This paper proposes an adaptive protection approach that takes advantage of multiple setting groups that are available in commercial DOCRs to account for network topology changes in microgrids. Because the number of possible topologies is greater than the available setting groups, unsupervised learning techniques are explored to classify network topologies into a number of clusters that is equal to the number of setting groups. Subsequently, optimal settings are calculated for every topology cluster. Every setting is saved in the DOCRs as a different setting group that would be activated when a corresponding topology takes place. Several tests are performed on a benchmark IEC (International Electrotechnical Commission) microgrid, evidencing the applicability of the proposed approach.


2012 ◽  
Vol 15 (12) ◽  
pp. 1675-1682 ◽  
Author(s):  
Arantza Barrios ◽  
Rajarshi Ghosh ◽  
Chunhui Fang ◽  
Scott W Emmons ◽  
Maureen M Barr

2012 ◽  
Vol 44 (3) ◽  
pp. 241-241
Author(s):  
Pamela Feliciano

2021 ◽  
Author(s):  
Matthew J Gadenne ◽  
Iris Hardege ◽  
Djordji Suleski ◽  
Paris Jaggers ◽  
Isabel Beets ◽  
...  

Sexual dimorphism occurs where different sexes of the same species display differences in characteristics not limited to reproduction. For the nematode Caenorhabditis elegans, in which the complete neuroanatomy has been solved for both hermaphrodites and males, sexually dimorphic features have been observed both in terms of the number of neurons and in synaptic connectivity. In addition, male behaviours, such as food-leaving to prioritise searching for mates, have been attributed to neuropeptides released from sex-shared or sex-specific neurons. In this study, we show that the lury-1 neuropeptide gene shows a sexually dimorphic expression pattern; being expressed in pharyngeal neurons in both sexes but displaying additional expression in tail neurons only in the male. We also show that lury-1 mutant animals show sex differences in feeding behaviours, with pharyngeal pumping elevated in hermaphrodites but reduced in males. LURY-1 also modulates male mating efficiency, influencing motor events during contact with a hermaphrodite. Our findings indicate sex-specific roles of this peptide in feeding and reproduction in C. elegans, providing further insight into neuromodulatory control of sexually dimorphic behaviours.


1991 ◽  
Vol 25 (2) ◽  
pp. 137-153 ◽  
Author(s):  
N Sayag ◽  
B Robinzon ◽  
N Snapir ◽  
E Arnon ◽  
V.E Grimm

Science ◽  
1984 ◽  
Vol 224 (4651) ◽  
pp. 896-898 ◽  
Author(s):  
R. McGivern ◽  
A. Clancy ◽  
M. Hill ◽  
E. Noble

Lab on a Chip ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 3685-3696 ◽  
Author(s):  
Samuel Sofela ◽  
Sarah Sahloul ◽  
Christopher Stubbs ◽  
Ajymurat Orozaliev ◽  
Fathima Shaffra Refai ◽  
...  

A microfluidic force assay chip was used to quantify the relative changes in the thrashing force of C. elegans upon exposure to various external stimuli.


2018 ◽  
Vol 14 (11) ◽  
pp. 155014771878447 ◽  
Author(s):  
Feng Su ◽  
Peijiang Yuan ◽  
Yuanwei Liu ◽  
Shuangqian Cao

In practical application, the generation and evolution of many real networks always do not follow rigorous mathematical model, making network topology optimization a great challenge in the field of complex networks. In this research, we optimize the topology of non-scale-free networks by turning it into scale-free networks using a nonlinear preferential rewiring method. For different kinds of original networks generated by Watts and Strogatz model, we systematically demonstrate the optimization process and the modified networks to verify the performance of nonlinear preferential rewiring. We conduct further researches to explore the effect of nonlinear preferential rewiring’s parameters on performance. Simulation results show that various non-scale-free networks with different network topologies generated by WS model, including random networks and various networks between regular and random, are turned into scale-free networks perfectly by nonlinear preferential rewiring method.


Sign in / Sign up

Export Citation Format

Share Document