scholarly journals The crystal structure of TRPM2 MHR1/2 domain reveals a conserved Zn2+-binding domain essential for ligand binding and activity

2022 ◽  
Author(s):  
Simon Sander ◽  
Ellen Gattkowski ◽  
Jelena Pick ◽  
Ralf Fliegert ◽  
Henning Tidow

Transient receptor potential melastatin 2 (TRPM2) is a Ca2+-permeable, non-selective cation channel involved in diverse physiological processes such as immune response, apoptosis and body temperature sensing. TRPM2 is activated by ADP-ribose (ADPR) and 2′-deoxy-ADPR in a Ca2+-dependent manner. While two species-specific binding sites exist for ADPR, a binding site for 2′-deoxy-ADPR is not known yet. Here, we report the crystal structure of the MHR1/2 domain of TRPM2 from zebrafish (Danio rerio) and show binding of both ligands to this domain. We identified a so-far unrecognized Zn2+-binding domain that was not resolved in previous cryo-EM structures and that is conserved in most TRPM channels. In combination with patch clamp experiments, we comprehensively characterize the effect of the Zn2+-binding domain on TRPM2 activation. Our results provide insight into a conserved structural element essential for channel activity.

2019 ◽  
Vol 20 (18) ◽  
pp. 4430 ◽  
Author(s):  
Monika Zouharova ◽  
Petr Herman ◽  
Kateřina Hofbauerová ◽  
Jiri Vondrasek ◽  
Kristyna Bousova

Transient receptor potential (TRPs) channels are crucial downstream targets of calcium signalling cascades. They can be modulated either by calcium itself and/or by calcium-binding proteins (CBPs). Intracellular messengers usually interact with binding domains present at the most variable TRP regions—N- and C-cytoplasmic termini. Calmodulin (CaM) is a calcium-dependent cytosolic protein serving as a modulator of most transmembrane receptors. Although CaM-binding domains are widespread within intracellular parts of TRPs, no such binding domain has been characterised at the TRP melastatin member—the transient receptor potential melastatin 6 (TRPM6) channel. Another CBP, the S100 calcium-binding protein A1 (S100A1), is also known for its modulatory activities towards receptors. S100A1 commonly shares a CaM-binding domain. Here, we present the first identified CaM and S100A1 binding sites at the N-terminal of TRPM6. We have confirmed the L520-R535 N-terminal TRPM6 domain as a shared binding site for CaM and S100A1 using biophysical and molecular modelling methods. A specific domain of basic amino acid residues (R526/R531/K532/R535) present at this TRPM6 domain has been identified as crucial to maintain non-covalent interactions with the ligands. Our data unambiguously confirm that CaM and S100A1 share the same binding domain at the TRPM6 N-terminus although the ligand-binding mechanism is different.


2012 ◽  
Vol 445 (3) ◽  
pp. 441-448 ◽  
Author(s):  
Hsiang-Chin Chen ◽  
Li-Ting Su ◽  
Omayra González-Pagán ◽  
Jeffrey D. Overton ◽  
Loren W. Runnels

The TRPM7 (transient receptor potential melastatin 7) channel has been shown to play a pivotal role in cell survival during brain ischaemia as well as in the survival of other cell types challenged with apoptotic stimuli. Ca2+ is thought to be central to the channel's ability to regulate ROS (reactive oxygen species) production. However, channel-mediated entry of Mg2+ and Zn2+ have also been implicated in cell death. In the present study, we show that depletion of TRPM7 by RNA interference in fibroblasts increases cell resistance to apoptotic stimuli by decreasing ROS levels in an Mg2+-dependent manner. Depletion of TRPM7 lowered cellular Mg2+, decreased the concentration of ROS and lessened p38 MAPK (mitogen-activated protein kinase) and JNK (c-Jun N-terminal kinase) activation as well as decreased caspase 3 activation and PARP [poly(ADP-ribose) polymerase] cleavage in response to apoptotic stimuli. Re-expression of TRPM7 or of a kinase-inactive mutant of TRPM7 in TRPM7-knockdown cells increased cellular Mg2+ and ROS levels, as did expression of the Mg2+ transporter SLC41A2 (solute carrier family 41 member 2). In addition, expression of SLC41A2 increased the sensitivity of TRPM7-knockdown cells to apoptotic stimuli and boosted ROS generation in response to cell stress. Taken together, these data uncover an essential role for Mg2+ in TRPM7's control of cell survival and in the regulation of cellular ROS levels.


2009 ◽  
Vol 296 (6) ◽  
pp. H1868-H1877 ◽  
Author(s):  
Christopher D. Johnson ◽  
Donal Melanaphy ◽  
Andrew Purse ◽  
Susan A. Stokesberry ◽  
Paula Dickson ◽  
...  

The transient receptor potential melastatin 8 (TRPM8) channel has been characterized as a cold and menthol receptor expressed in a subpopulation of sensory neurons but was recently identified in other tissues, including the respiratory tract, urinary system, and vasculature. Thus TRPM8 may play multiple functional roles, likely to be in a tissue- and activation state-dependent manner. We examined the TRPM8 channel presence in large arteries from rats and the functional consequences of their activation. We also aimed to examine whether these channels contribute to control of conscious human skin blood flow. TRPM8 mRNA and protein were detected in rat tail, femoral and mesenteric arteries, and thoracic aorta. This was confirmed in single isolated vascular myocytes by immunocytochemistry. Isometric contraction studies on endothelium-denuded relaxed rat vessels found small contractions on application of the TRPM8-specific agonist menthol (300 μM). However, both menthol and another agonist icilin (50 μM) caused relaxation of vessels precontracted with KCl (60 mM) or the α-adrenoceptor agonist phenylephrine (2 μM) and a reduction in sympathetic nerve-mediated contraction. These effects were antagonized by bromoenol lactone treatment, suggesting the involvement of Ca2+-independent phospholipase A2 activation in TRPM8-mediated vasodilatation. In thoracic aorta with intact endothelium, menthol-induced inhibition of KCl-induced contraction was enhanced. This was unaltered by preincubation with either Nω-nitro-l-arginine methyl ester (l-NAME; 100 nM), a nitric oxide synthase inhibitor, or the ACh receptor antagonist atropine (1 μM). Application of menthol (3% solution, topical application) to skin caused increased blood flow in conscious humans, as measured by laser Doppler fluximetry. Vasodilatation was markedly reduced or abolished by prior application of l-NAME (passive application, 10 mM) or atropine (iontophoretic application, 100 nM, 30 s at 70 μA). We conclude that TRPM8 channels are present in rat artery vascular smooth muscle and on activation cause vasoconstriction or vasodilatation, dependent on previous vasomotor tone. TRPM8 channels may also contribute to human cutaneous vasculature control, likely with the involvement of additional neuronal mechanisms.


2020 ◽  
Vol 21 (10) ◽  
pp. 985-992 ◽  
Author(s):  
Koichi Inoue ◽  
Zhi-Gang Xiong ◽  
Takatoshi Ueki

: Transient receptor potential melastatin 7 (TRPM7), along with the closely related TRPM6, are unique channels that have dual operations: cation permeability and kinase activity. In contrast to the limited tissue distribution of TRPM6, TRPM7 is widely expressed among tissues and is therefore implicated in a variety of cellular functions physiologically and pathophysiologically. The discovery of TRPM7’s unique structure imparting dual ion channel and kinase activities shed light onto novel and peculiar biological functions, such as Mg2+ homeostasis, cellular Ca2+ flickering, and even intranuclear transcriptional regulation by a cleaved kinase domain translocated to nuclei. Interestingly, at a higher level, TRPM7 participates in several biological processes in the nervous and cardiovascular systems, in which excitatory responses in neurons and cardiomyocytes are critical for their function. Here, we review the roles of TRPM7 in cells involved in the nervous and cardiovascular systems and discuss its potential as a future therapeutic target.


2020 ◽  
Vol 17 (3) ◽  
pp. 249-258 ◽  
Author(s):  
Pavan Thapak ◽  
Mahendra Bishnoi ◽  
Shyam S. Sharma

Background: Diabetes is a chronic metabolic disorder affecting the central nervous system. A growing body of evidence has depicted that high glucose level leads to the activation of the transient receptor potential melastatin 2 (TRPM2) channels. However, there are no studies targeting TRPM2 channels in diabetes-induced cognitive decline using a pharmacological approach. Objective: The present study intended to investigate the effects of 2-aminoethoxydiphenyl borate (2-APB), a TRPM2 inhibitor, in diabetes-induced cognitive impairment. Methods: Streptozotocin (STZ, 50 mg/kg, i.p.) was used to induce diabetes in rats. Animals were randomly divided into the treatment group, model group and age-matched control and pre se group. 2-APB treatment was given for three weeks to the animals. After 10 days of behavioural treatment, parameters were performed. Animals were sacrificed at 10th week of diabetic induction and the hippocampus and cortex were isolated. After that, protein and mRNA expression study was performed in the hippocampus. Acetylcholinesterase (AchE) activity was done in the cortex. Results: : Our study showed the 10th week diabetic animals developed cognitive impairment, which was evident from the behavioural parameters. Diabetic animals depicted an increase in the TRPM2 mRNA and protein expression in the hippocampus as well as increased AchE activity in the cortex. However, memory associated proteins were down-regulated, namely Ca2+/calmodulin-dependent protein kinase II (CaMKII-Thr286), glycogen synthase kinase 3 beta (GSK-3β-Ser9), cAMP response element-binding protein (CREB-Ser133), and postsynaptic density protein 95 (PSD-95). Gene expression of parvalbumin, calsequestrin and brain-derived neurotrophic factor (BDNF) were down-regulated while mRNA level of calcineurin A/ protein phosphatase 3 catalytic subunit alpha (PPP3CA) was upregulated in the hippocampus of diabetic animals. A three-week treatment with 2-APB significantly ameliorated the alteration in behavioural cognitive parameters in diabetic rats. Moreover, 2-APB also down-regulated the expression of TRPM2 mRNA and protein in the hippocampus as well as AchE activity in the cortex of diabetic animals as compared to diabetic animals. Moreover, the 2-APB treatment also upregulated the CaMKII (Thr-286), GSK-3β (Ser9), CREB (Ser133), and PSD-95 expression and mRNA levels of parvalbumin, calsequestrin, and BDNF while mRNA level of calcineurin A was down-regulated in the hippocampus of diabetic animals. Conclusion: : This study confirms the ameliorative effect of TRPM2 channel inhibitor in the diabetes- induced cognitive deficits. Inhibition of TRPM2 channels reduced the calcium associated downstream signaling and showed a neuroprotective effect of TRPM2 channels in diabetesinduced cognitive impairment.


Pancreatology ◽  
2019 ◽  
Vol 19 ◽  
pp. S94
Author(s):  
Júlia Fanczal ◽  
Petra Pallagi ◽  
Marietta Görög ◽  
Csaba Péter Bíró ◽  
Tamara Madácsy ◽  
...  

2021 ◽  
Vol 34 (1) ◽  
pp. 121-122
Author(s):  
Yi-quan Dai ◽  
Xiao-xiao Yan ◽  
Yi-chen Lin ◽  
Hong-yu Chen ◽  
Xiao-ru Liu

Abstract Background To investigate the function of transient receptor potential melastatin 2 (TRPM2) in vascular reactivity induced by 5-hydroxytryptamine (5-HT) in the aorta during development of atherosclerosis in mice. Methods Forty mice were randomly divided into 4 groups: C57BL/6J on normal diet (C57 + ND), C57BL/6J on high-fat diet (C57 + HFD), apolipoprotein E gene knockout mice (ApoE−/−) on ND (ApoE−/− + ND), and ApoE−/− on HFD (ApoE−/− + HFD). They were fed with a ND or HFD for 16 weeks. Aortic TRPM2 expression and isometric contractions were analyzed. Results In the ApoE−/− + HFD group, body weight, blood glucose, and blood lipid concentrations were increased, and aortic plaques were developed. Compared with the other 3 groups, aortic TRPM2 mRNA and protein levels were significantly increased in the ApoE−/− + HFD group (P < 0.01). Aortic reactivity to 5-HT was enhanced in ApoE−/− + HFD mice with lower EC50 values. The enhanced reactivity to 5-HT was significantly inhibited by TRPM2 inhibitors, N-p-amylcinnamoyl anthranilic acid (1 µmol/l) and 2-aminoethyl diphenylborinate (10 µmol/l). Conclusions Aortic TRPM2 expression is upregulated in ApoE knockout mice fed with a HFD. Upregulation of TRPM2 enhances 5-HT vascular reactivity during development of atherosclerosis.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1893
Author(s):  
Chieko Hirota ◽  
Yui Takashina ◽  
Yuta Yoshino ◽  
Hajime Hasegawa ◽  
Ema Okamoto ◽  
...  

Background: A low level of serum magnesium ion (Mg2+) is associated with type 2 diabetes mellitus (T2D). However, the molecular mechanism of Mg2+ deficiency has not been fully clarified. The current study sought to assesses the effect of reactive oxygen species on the expression of Mg2+ channels and miRNA. Methods: The expression of Mg2+ channels and miRNA were examined by real-time polymerase chain reaction. Intracellular Mg2+ concentration was measured by Magnesium Green fluorescence measurement. Results: The mRNA level of transient receptor potential melastatin 6 (TRPM6), which functions as Mg2+ influx channel in the distal convoluted tubule (DCT) of the kidney, was decreased by glycated albumin (GA), but not by insulin in rat renal tubule-derived NRK-52E cells. The mRNA levels of TRPM7, a homologue of TRPM6, and CNNM2, a Mg2+ efflux transporter located at the basolateral membrane of DCT, were changed by neither GA nor insulin. The generation of reactive oxygen species (ROS) was increased by GA. Hydrogen peroxide (H2O2) dose-dependently decreased TRPM6 mRNA, but it inversely increased the reporter activity of TRPM6. H2O2 accelerated the degradation of TRPM6 mRNA in actinomycin D assay without affecting TRPM7 and CNNM2 mRNA expressions. Nine miRNAs were considered as candidates for the regulator of stability of TRPM6 mRNA. Among them, miR-24-3p expression was increased by H2O2. The H2O2-induced reduction of TRPM6 mRNA was rescued by miR-24-3p siRNA. Magnesium Green fluorescence measurement showed that Mg2+ influx is suppressed by H2O2, which was rescued by an antioxidant and miR-24-3p siRNA. Conclusions: We suggest that GA decreases TRPM6 expression mediated by the elevation of ROS and miR-24-3p in renal tubular epithelial cells of T2D.


2021 ◽  
pp. 1-13
Author(s):  
Jiachen Liu ◽  
Laijiang Chen ◽  
Jun Huang ◽  
Shujie Guo ◽  
Dingliang Zhu ◽  
...  

Remodeling of the arteries is one of the pathological bases of hypertension. We have previously shown that transient receptor potential melastatin 7 (TRPM7) aggravates the vascular adventitial remodeling caused by pressure overload in the transverse aortic constriction (TAC) model. In this study, we sought to explore the functional expression and downstream signaling of TRPM7 in vascular adventitial fibroblasts (AFs) stimulated by mechanical stretching stress (MSS). The expression of TRPM7 was upregulated with a concomitant translocation to the cytoplasm in the AFs stimulated with 20% MSS. Meanwhile, the expression of α-smooth muscle actin (α-SMA), a marker of transformation from AFs to myofibroblasts (MFs) was also increased. Moreover, AF-conditioned medium caused a significant migration of macrophages after treatment with MSS and contained high levels of monocyte chemotactic protein-1 (MCP-1), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α). Pharmacological and RNA interference approaches using the TRPM7 inhibitor 2-aminoethoxydiphenyl borate (2-APB) and specific anti-TRPM7 small interfering RNA (si­RNA-TRPM7) abrogated these changes significantly. Further exploration uncloaked that inhibition of TRPM7 reduced the phosphorylation of p38 MAP kinase (p38MAPK) and c-Jun N-terminal kinase (JNK) in the AFs stimulated with MSS. Furthermore, inhibition of the phosphorylation of p38MAPK or JNK could also alleviate the MSS-induced expression of α-SMA and secretion of inflammatory factors. These observations indicate that activated TRPM7 participates in the phenotypic transformation and inflammatory action of AFs in response to MSS through the p38MAPK/JNK pathway and suggest that TRPM7 may be a potential therapeutic target for vascular remodeling caused by hemodynamic changes in hypertension.


Sign in / Sign up

Export Citation Format

Share Document