scholarly journals A weighted graph of the projections to mouse auditory cortex

2017 ◽  
Author(s):  
Nuno Macarico da Costa ◽  
Kevan A.C. Martin ◽  
Franziska D. Sägesser

AbstractThe projections to individual cortical areas from extrinsic sources are a major determinant of the area’s function, but we lack comprehensive quantitative input maps even for primary sensory areas in most model species. To quantify all input sources to the mouse primary auditory cortex (Au1), we made localized injections of modified rabies virus (SADΔG-mCherry) into Au1 of five C57BL/6 mice and identified all the cortical and subcortical areas containing retrogradely labeled cells. Of all neurons projecting to Au1 from extrinsic areas, 27 % were located in the ipsilateral cortex, 14 % in the contralateral cortex, and 58 % in subcortical regions (almost exclusively ipsilateral, predominantly in the medial geniculate nucleus). Although 90 % of the labeled cells in the ipsilateral cortex were located within 1 mm of Au1, most cortical areas projected to Au1, including visual, somatosensory, motor, rhinal, cingulate and piriform cortices. The hierarchical relations of the cortical areas projecting to Au1 were determined based on the proportion of cell bodies in superficial versus deep layers. Feedback projections (from deep layers 5/6) dominated, but temporal association and auditory cortices were on the same hierarchical level, providing input from both superficial and deep layers. Au1 is embedded in a densely connected network that involves a high degree of cross-modal integration.

2020 ◽  
Author(s):  
L Feigin ◽  
G Tasaka ◽  
I Maor ◽  
A Mizrahi

AbstractThe mouse auditory cortex is comprised of several auditory fields spanning the dorso-ventral axis of the temporal lobe. The ventral most auditory field is the temporal association cortex (TeA), which remains largely unstudied. Using Neuropixels probes, we simultaneously recorded from primary auditory cortex (AUDp), secondary auditory cortex (AUDv) and TeA, characterizing neuronal responses to pure tones and frequency modulated (FM) sweeps in awake head-restrained mice. As compared to primary and secondary auditory cortices, single unit responses to pure tones in TeA were sparser, delayed and prolonged. Responses to FMs were also sparser. Population analysis showed that the sparser responses in TeA render it less sensitive to pure tones, yet more sensitive to FMs. When characterizing responses to pure tones under anesthesia, the distinct signature of TeA was changed considerably as compared to that in awake mice, implying that responses in TeA are strongly modulated by non-feedforward connections. Together with the known connectivity profile of TeA, these findings suggest that sparse representation of sounds in TeA supports selectivity to higher-order features of sounds and more complex auditory computations.


2011 ◽  
Vol 105 (4) ◽  
pp. 1558-1573 ◽  
Author(s):  
Yu-Ting Mao ◽  
Tian-Miao Hua ◽  
Sarah L. Pallas

Sensory neocortex is capable of considerable plasticity after sensory deprivation or damage to input pathways, especially early in development. Although plasticity can often be restorative, sometimes novel, ectopic inputs invade the affected cortical area. Invading inputs from other sensory modalities may compromise the original function or even take over, imposing a new function and preventing recovery. Using ferrets whose retinal axons were rerouted into auditory thalamus at birth, we were able to examine the effect of varying the degree of ectopic, cross-modal input on reorganization of developing auditory cortex. In particular, we assayed whether the invading visual inputs and the existing auditory inputs competed for or shared postsynaptic targets and whether the convergence of input modalities would induce multisensory processing. We demonstrate that although the cross-modal inputs create new visual neurons in auditory cortex, some auditory processing remains. The degree of damage to auditory input to the medial geniculate nucleus was directly related to the proportion of visual neurons in auditory cortex, suggesting that the visual and residual auditory inputs compete for cortical territory. Visual neurons were not segregated from auditory neurons but shared target space even on individual target cells, substantially increasing the proportion of multisensory neurons. Thus spatial convergence of visual and auditory input modalities may be sufficient to expand multisensory representations. Together these findings argue that early, patterned visual activity does not drive segregation of visual and auditory afferents and suggest that auditory function might be compromised by converging visual inputs. These results indicate possible ways in which multisensory cortical areas may form during development and evolution. They also suggest that rehabilitative strategies designed to promote recovery of function after sensory deprivation or damage need to take into account that sensory cortex may become substantially more multisensory after alteration of its input during development.


2002 ◽  
Vol 88 (1) ◽  
pp. 540-543 ◽  
Author(s):  
John J. Foxe ◽  
Glenn R. Wylie ◽  
Antigona Martinez ◽  
Charles E. Schroeder ◽  
Daniel C. Javitt ◽  
...  

Using high-field (3 Tesla) functional magnetic resonance imaging (fMRI), we demonstrate that auditory and somatosensory inputs converge in a subregion of human auditory cortex along the superior temporal gyrus. Further, simultaneous stimulation in both sensory modalities resulted in activity exceeding that predicted by summing the responses to the unisensory inputs, thereby showing multisensory integration in this convergence region. Recently, intracranial recordings in macaque monkeys have shown similar auditory-somatosensory convergence in a subregion of auditory cortex directly caudomedial to primary auditory cortex (area CM). The multisensory region identified in the present investigation may be the human homologue of CM. Our finding of auditory-somatosensory convergence in early auditory cortices contributes to mounting evidence for multisensory integration early in the cortical processing hierarchy, in brain regions that were previously assumed to be unisensory.


2015 ◽  
Vol 282 (1811) ◽  
pp. 20151203 ◽  
Author(s):  
Gregory S. Berns ◽  
Peter F. Cook ◽  
Sean Foxley ◽  
Saad Jbabdi ◽  
Karla L. Miller ◽  
...  

The brains of odontocetes (toothed whales) look grossly different from their terrestrial relatives. Because of their adaptation to the aquatic environment and their reliance on echolocation, the odontocetes' auditory system is both unique and crucial to their survival. Yet, scant data exist about the functional organization of the cetacean auditory system. A predominant hypothesis is that the primary auditory cortex lies in the suprasylvian gyrus along the vertex of the hemispheres, with this position induced by expansion of ‘associative′ regions in lateral and caudal directions. However, the precise location of the auditory cortex and its connections are still unknown. Here, we used a novel diffusion tensor imaging (DTI) sequence in archival post-mortem brains of a common dolphin ( Delphinus delphis ) and a pantropical dolphin ( Stenella attenuata ) to map their sensory and motor systems. Using thalamic parcellation based on traditionally defined regions for the primary visual (V1) and auditory cortex (A1), we found distinct regions of the thalamus connected to V1 and A1. But in addition to suprasylvian-A1, we report here, for the first time, the auditory cortex also exists in the temporal lobe, in a region near cetacean-A2 and possibly analogous to the primary auditory cortex in related terrestrial mammals (Artiodactyla). Using probabilistic tract tracing, we found a direct pathway from the inferior colliculus to the medial geniculate nucleus to the temporal lobe near the sylvian fissure. Our results demonstrate the feasibility of post-mortem DTI in archival specimens to answer basic questions in comparative neurobiology in a way that has not previously been possible and shows a link between the cetacean auditory system and those of terrestrial mammals. Given that fresh cetacean specimens are relatively rare, the ability to measure connectivity in archival specimens opens up a plethora of possibilities for investigating neuroanatomy in cetaceans and other species.


Perception ◽  
10.1068/p5841 ◽  
2007 ◽  
Vol 36 (10) ◽  
pp. 1419-1430 ◽  
Author(s):  
Troy A Hackett ◽  
John F Smiley ◽  
Istvan Ulbert ◽  
George Karmos ◽  
Peter Lakatos ◽  
...  

The auditory cortex of nonhuman primates is comprised of a constellation of at least twelve interconnected areas distributed across three major regions on the superior temporal gyrus: core, belt, and parabelt. Individual areas are distinguished on the basis of unique profiles comprising architectonic features, thalamic and cortical connections, and neuron response properties. Recent demonstrations of convergent auditory – somatosensory interactions in the caudomedial (CM) and caudolateral (CL) belt areas prompted us to pursue anatomical studies to identify the source(s) of somatic input to auditory cortex. Corticocortical and thalamocortical connections were revealed by injecting neuroanatomical tracers into CM, CL, and adjoining fields of marmoset ( Callithrix jacchus jacchus) and macaque ( Macaca mulatta) monkeys. In addition to auditory cortex, the cortical connections of CM and CL included somatosensory (retroinsular, Ri; granular insula, Ig) and multisensory areas (temporal parietal occipital, temporal parietal temporal). Thalamic inputs included the medial geniculate complex and several multisensory nuclei (supra- geniculate, posterior, limitans, medial pulvinar), but not the ventroposterior complex. Injections of the core (A1, R) and rostromedial areas of auditory cortex revealed sparse multisensory connections. The results suggest that areas Ri and Ig are the principle sources of somatosensory input to the caudal belt, while multisensory regions of cortex and thalamus may also contribute. The present data add to growing evidence of multisensory convergence in cortical areas previously considered to be ‘unimodal’, and also indicate that auditory cortical areas differ in this respect.


2015 ◽  
Vol 112 (52) ◽  
pp. 16036-16041 ◽  
Author(s):  
Federico De Martino ◽  
Michelle Moerel ◽  
Kamil Ugurbil ◽  
Rainer Goebel ◽  
Essa Yacoub ◽  
...  

Columnar arrangements of neurons with similar preference have been suggested as the fundamental processing units of the cerebral cortex. Within these columnar arrangements, feed-forward information enters at middle cortical layers whereas feedback information arrives at superficial and deep layers. This interplay of feed-forward and feedback processing is at the core of perception and behavior. Here we provide in vivo evidence consistent with a columnar organization of the processing of sound frequency in the human auditory cortex. We measure submillimeter functional responses to sound frequency sweeps at high magnetic fields (7 tesla) and show that frequency preference is stable through cortical depth in primary auditory cortex. Furthermore, we demonstrate that—in this highly columnar cortex—task demands sharpen the frequency tuning in superficial cortical layers more than in middle or deep layers. These findings are pivotal to understanding mechanisms of neural information processing and flow during the active perception of sounds.


2018 ◽  
Author(s):  
Anna Dora Manca ◽  
Francesco Di Russo ◽  
Francesco Sigona ◽  
Mirko Grimaldi

How the brain encodes the speech acoustic signal into phonological representations (distinctive features) is a fundamental question for the neurobiology of language. Whether this process is characterized by tonotopic maps in primary or secondary auditory areas, with bilateral or leftward activity, remains a long-standing challenge. Magnetoencephalographic and ECoG studies have previously failed to show hierarchical and asymmetric hints for speech processing. We employed high-density electroencephalography to map the Salento Italian vowel system onto cortical sources using the N1 auditory evoked component. We found evidence that the N1 is characterized by hierarchical and asymmetric indexes structuring vowels representation. We identified them with two N1 subcomponents: the typical N1 (N1a) peaking at 125-135 ms and localized in the primary auditory cortex bilaterally with a tangential distribution and a late phase of the N1 (N1b) peaking at 145-155 ms and localized in the left superior temporal gyrus with a radial distribution. Notably, we showed that the processing of distinctive feature representations begins early in the primary auditory cortex and carries on in the superior temporal gyrus along lateral-medial, anterior-posterior and inferior-superior gradients. It is the dynamical interface of both auditory cortices and the interaction effects between different distinctive features that generate the categorical representations of vowels.


2007 ◽  
Vol 97 (2) ◽  
pp. 1413-1427 ◽  
Author(s):  
Hubert H. Lim ◽  
David J. Anderson

The inferior colliculus (IC) is highly modulated by descending projections from higher auditory and nonauditory centers. Traditionally, corticofugal fibers were believed to project mainly to the extralemniscal IC regions. However, there is some anatomical evidence suggesting that a substantial number of fibers from the primary auditory cortex (A1) project into the IC central nucleus (ICC) and appear to be tonotopically organized. In this study, we used antidromic stimulation combined with other electrophysiological techniques to further investigate the spatial organization of descending fibers from A1 to the ICC in ketamine-anesthetized guinea pigs. Based on our findings, corticofugal fibers originate predominantly from layer V of A1, are amply scattered throughout the ICC and only project to ICC neurons with a similar best frequency (BF). This strict tonotopic pattern suggests that these corticofugal projections are involved with modulating spectral features of sound. Along the isofrequency dimension of the ICC, there appears to be some differences in projection patterns that depend on BF region and possibly isofrequency location within A1 and may be indicative of different descending coding strategies. Furthermore, the success of the antidromic stimulation method in our study demonstrates that it can be used to investigate some of the functional properties associated with corticofugal projections to the ICC as well as to other regions (e.g., medial geniculate body, cochlear nucleus). Such a method can address some of the limitations with current anatomical techniques for studying the auditory corticofugal system.


Sign in / Sign up

Export Citation Format

Share Document