scholarly journals Diffusion tensor imaging of dolphin brains reveals direct auditory pathway to temporal lobe

2015 ◽  
Vol 282 (1811) ◽  
pp. 20151203 ◽  
Author(s):  
Gregory S. Berns ◽  
Peter F. Cook ◽  
Sean Foxley ◽  
Saad Jbabdi ◽  
Karla L. Miller ◽  
...  

The brains of odontocetes (toothed whales) look grossly different from their terrestrial relatives. Because of their adaptation to the aquatic environment and their reliance on echolocation, the odontocetes' auditory system is both unique and crucial to their survival. Yet, scant data exist about the functional organization of the cetacean auditory system. A predominant hypothesis is that the primary auditory cortex lies in the suprasylvian gyrus along the vertex of the hemispheres, with this position induced by expansion of ‘associative′ regions in lateral and caudal directions. However, the precise location of the auditory cortex and its connections are still unknown. Here, we used a novel diffusion tensor imaging (DTI) sequence in archival post-mortem brains of a common dolphin ( Delphinus delphis ) and a pantropical dolphin ( Stenella attenuata ) to map their sensory and motor systems. Using thalamic parcellation based on traditionally defined regions for the primary visual (V1) and auditory cortex (A1), we found distinct regions of the thalamus connected to V1 and A1. But in addition to suprasylvian-A1, we report here, for the first time, the auditory cortex also exists in the temporal lobe, in a region near cetacean-A2 and possibly analogous to the primary auditory cortex in related terrestrial mammals (Artiodactyla). Using probabilistic tract tracing, we found a direct pathway from the inferior colliculus to the medial geniculate nucleus to the temporal lobe near the sylvian fissure. Our results demonstrate the feasibility of post-mortem DTI in archival specimens to answer basic questions in comparative neurobiology in a way that has not previously been possible and shows a link between the cetacean auditory system and those of terrestrial mammals. Given that fresh cetacean specimens are relatively rare, the ability to measure connectivity in archival specimens opens up a plethora of possibilities for investigating neuroanatomy in cetaceans and other species.

Author(s):  
Shawn D’Souza ◽  
Lisa Hirt ◽  
David R Ormond ◽  
John A Thompson

Abstract Gliomas are neoplasms that arise from glial cell origin and represent the largest fraction of primary malignant brain tumours (77%). These highly infiltrative malignant cell clusters modify brain structure and function through expansion, invasion and intratumoral modification. Depending on the growth rate of the tumour, location and degree of expansion, functional reorganization may not lead to overt changes in behaviour despite significant cerebral adaptation. Studies in simulated lesion models and in patients with stroke reveal both local and distal functional disturbances, using measures of anatomical brain networks. Investigations over the last two decades have sought to use diffusion tensor imaging tractography data in the context of intracranial tumours to improve surgical planning, intraoperative functional localization, and post-operative interpretation of functional change. In this study, we used diffusion tensor imaging tractography to assess the impact of tumour location on the white matter structural network. To better understand how various lobe localized gliomas impact the topology underlying efficiency of information transfer between brain regions, we identified the major alterations in brain network connectivity patterns between the ipsilesional versus contralesional hemispheres in patients with gliomas localized to the frontal, parietal or temporal lobe. Results were indicative of altered network efficiency and the role of specific brain regions unique to different lobe localized gliomas. This work draws attention to connections and brain regions which have shared structural susceptibility in frontal, parietal and temporal lobe glioma cases. This study also provides a preliminary anatomical basis for understanding which affected white matter pathways may contribute to preoperative patient symptomology.


2014 ◽  
Vol 24 (11) ◽  
pp. 2810-2818 ◽  
Author(s):  
Sebastian Winklhofer ◽  
Christian T. Stoeck ◽  
Nicole Berger ◽  
Michael Thali ◽  
Robert Manka ◽  
...  

2010 ◽  
Vol 4 ◽  
pp. 16-25 ◽  
Author(s):  
Alessandro Crippa ◽  
Cris P Lanting ◽  
Pim van Dijk ◽  
Jos B.T.M Roerdink

2018 ◽  
Vol 86 (9) ◽  
pp. 2501-2505
Author(s):  
NERMEEN M.S. GARHY, M.D.; AMR O.M.A. AZAB, M.D. ◽  
RANIA Z. HASSAN, M.D.; ASMAA M. EBRAHEIM, M.D.

Sign in / Sign up

Export Citation Format

Share Document