scholarly journals De novo assembly of two Swedish genomes reveals missing segments from the human GRCh38 reference and improves variant calling of population-scale sequencing data

2018 ◽  
Author(s):  
Adam Ameur ◽  
Huiwen Che ◽  
Marcel Martin ◽  
Ignas Bunikis ◽  
Johan Dahlberg ◽  
...  

AbstractWe have performed de novo assembly of two Swedish genomes using long-read sequencing and optical mapping, resulting in total assembly sizes of nearly 3 Gb and hybrid scaffold N50 values of over 45 Mb. A further analysis revealed over 10 Mb of sequences absent from the human GRCh38 reference in each individual. Around 6 Mb of these novel sequences (NS) are shared with a Chinese personal genome. The NS are highly repetitive, have elevated GC-content and are primarily located in centromeric or telomeric regions. A BLAST search showed that 31% of the NS are different from any sequences deposited in nucleotide databases. The remaining NS correspond to human (62%) or primate (6%) nucleotide entries, while 1% of hits show the highest similarity to other species, including mouse and a few different classes of parasitic worms. Up to 1 Mb of NS can be assigned to chromosome Y, and large segments are missing from GRCh38 also at chromosomes 14, 17 and 21. Inclusion of these novel sequences into the GRCh38 reference radically improves the alignment and variant calling of whole-genome sequencing data at several genomic loci. Through a re-analysis of 200 samples from a Swedish population-scale sequencing project, we obtained over 75,000 putative novel SNVs per individual when using a custom version of GRCh38 extended with 17.3 Mb of NS. In addition, about 10,000 false positive SNV calls per individual were removed from the GRCh38 autosomes and sex chromosomes in the re-analysis, with some of them located in protein coding regions.

Genes ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 486 ◽  
Author(s):  
Adam Ameur ◽  
Huiwen Che ◽  
Marcel Martin ◽  
Ignas Bunikis ◽  
Johan Dahlberg ◽  
...  

The current human reference sequence (GRCh38) is a foundation for large-scale sequencing projects. However, recent studies have suggested that GRCh38 may be incomplete and give a suboptimal representation of specific population groups. Here, we performed a de novo assembly of two Swedish genomes that revealed over 10 Mb of sequences absent from the human GRCh38 reference in each individual. Around 6 Mb of these novel sequences (NS) are shared with a Chinese personal genome. The NS are highly repetitive, have an elevated GC-content, and are primarily located in centromeric or telomeric regions. Up to 1 Mb of NS can be assigned to chromosome Y, and large segments are also missing from GRCh38 at chromosomes 14, 17, and 21. Inclusion of NS into the GRCh38 reference radically improves the alignment and variant calling from short-read whole-genome sequencing data at several genomic loci. A re-analysis of a Swedish population-scale sequencing project yields > 75,000 putative novel single nucleotide variants (SNVs) and removes > 10,000 false positive SNV calls per individual, some of which are located in protein coding regions. Our results highlight that the GRCh38 reference is not yet complete and demonstrate that personal genome assemblies from local populations can improve the analysis of short-read whole-genome sequencing data.


2015 ◽  
Author(s):  
Justin M Zook ◽  
David Catoe ◽  
Jennifer McDaniel ◽  
Lindsay Vang ◽  
Noah Spies ◽  
...  

The Genome in a Bottle Consortium, hosted by the National Institute of Standards and Technology (NIST) is creating reference materials and data for human genome sequencing, as well as methods for genome comparison and benchmarking. Here, we describe a large, diverse set of sequencing data for seven human genomes; five are current or candidate NIST Reference Materials. The pilot genome, NA12878, has been released as NIST RM 8398. We also describe data from two Personal Genome Project trios, one of Ashkenazim Jewish ancestry and one of Chinese ancestry. The data come from 12 technologies: BioNano Genomics, Complete Genomics paired-end and LFR, Ion Proton exome, Oxford Nanopore, Pacific Biosciences, SOLiD, 10X Genomics GemCodeTM WGS, and Illumina exome and WGS paired-end, mate-pair, and synthetic long reads. Cell lines, DNA, and data from these individuals are publicly available. Therefore, we expect these data to be useful for revealing novel information about the human genome and improving sequencing technologies, SNP, indel, and structural variant calling, and de novo assembly.


2019 ◽  
Vol 37 (1) ◽  
pp. 18-30 ◽  
Author(s):  
Jesper Eisfeldt ◽  
Gustaf Mårtensson ◽  
Adam Ameur ◽  
Daniel Nilsson ◽  
Anna Lindstrand

Abstract Novel sequences (NSs), not present in the human reference genome, are abundant and remain largely unexplored. Here, we utilize de novo assembly to study NS in 1,000 Swedish individuals first sequenced as part of the SweGen project revealing a total of 46 Mb in 61,044 distinct contigs of sequences not present in GRCh38. The contigs were aligned to recently published catalogs of Icelandic and Pan-African NSs, as well as the chimpanzee genome, revealing a great diversity of shared sequences. Analyzing the positioning of NS across the chimpanzee genome, we find that 2,807 NS align confidently within 143 chimpanzee orthologs of human genes. Aligning the whole genome sequencing data to the chimpanzee genome, we discover ancestral NS common throughout the Swedish population. The NSs were searched for repeats and repeat elements: revealing a majority of repetitive sequence (56%), and enrichment of simple repeats (28%) and satellites (15%). Lastly, we align the unmappable reads of a subset of the thousand genomes data to our collection of NS, as well as the previously published Pan-African NS: revealing that both the Swedish and Pan-African NS are widespread, and that the Swedish NSs are largely a subset of the Pan-African NS. Overall, these results highlight the importance of creating a more diverse reference genome and illustrate that significant amounts of the NS may be of ancestral origin.


2018 ◽  
Author(s):  
Travis Oenning ◽  
Taejeong Bae ◽  
Aravind Iyengar ◽  
Barrett Brickner ◽  
Madushanka Soysa ◽  
...  

Application of assembly methods for personal genome analysis from next generation sequencing data has been limited by the requirement for an expensive supercomputer hardware or long computation times when using ordinary resources. We describe CompStor Novos, achieving supercomputer-class performance in de novo assembly computation time on standard server hardware, based on a tiered-memory algorithm. Run on commercial off-the-shelf servers, Novos assembly is more precise and 10-20 times faster than that of existing assembly algorithms. Furthermore, we integrated Novos into a variant calling pipeline and demonstrate that both compute times and precision of calling point variants and indels compare well with standard alignment-based pipelines. Additionally, assembly eliminates bias in the estimation of allele frequency for indels and naturally enables discovery of breakpoints for structural variants with base pair resolution. Thus, Novos bridges the gap between alignment-based and assembly-based genome analyses. Extension and adaption of its underlying algorithm will help quickly and fully harvest information in sequencing reads for personal genome reconstruction.


2020 ◽  
Author(s):  
Evin M. Padhi ◽  
Tristan J. Hayeck ◽  
Brandon Mannion ◽  
Sumantra Chatterjee ◽  
Marta Byrska-Bishop ◽  
...  

AbstractPrevious research in autism and other neurodevelopmental disorders (NDDs) has indicated an important contribution of de novo protein-coding variants within specific genes. The role of de novo noncoding variation has been observable as a general increase in genetic burden but has yet to be resolved to individual functional elements. In this study, we assessed whole-genome sequencing data in 2,671 families with autism, with a specific focus on de novo variation in enhancers with previously characterized in vivo activity. We identified three independent de novo mutations limited to individuals with autism in the enhancer hs737. These mutations result in similar phenotypic characteristics, affect enhancer activity in vitro, and preferentially occur in AAT motifs in the enhancer with predicted disruptions of transcription factor binding. We also find that hs737 is enriched for copy number variation in individuals with NDDs, is dosage sensitive in the human population, is brain-specific, and targets the NDD gene EBF3 that is genome-wide significant for protein coding de novo variants, demonstrating the importance of understanding all forms of variation in the genome.One Sentence SummaryWhole-genome sequencing in thousands of families reveals variants relevant to simplex autism in a brain enhancer of the well-established neurodevelopmental disorder gene EBF3.


2016 ◽  
Author(s):  
Thomas Willems ◽  
Melissa Gymrek ◽  
G. David Poznik ◽  
Chris Tyler-Smith ◽  
Yaniv Erlich ◽  
...  

AbstractShort Tandem Repeats (STRs) are mutation-prone loci that span nearly 1% of the human genome. Previous studies have estimated the mutation rates of highly polymorphic STRs using capillary electrophoresis and pedigree-based designs. While this work has provided insights into the mutational dynamics of highly mutable STRs, the mutation rates of most others remain unknown. Here, we harnessed whole-genome sequencing data to estimate the mutation rates of Y-chromosome STRs (Y-STRs) with 2-6 base pair repeat units that are accessible to Illumina sequencing. We genotyped 4,500 Y-STRs using data from the 1000 Genomes Project and the Simons Genome Diversity Project. Next, we developed MUTEA, an algorithm that infers STR mutation rates from population-scale data using a high-resolution SNP-based phylogeny. After extensive intrinsic and extrinsic validations, we harnessed MUTEA to derive mutation rate estimates for 702 polymorphic STRs by tracing each locus over 222,000 meioses, resulting in the largest collection of Y-STR mutation rates to date. Using our estimates, we identified determinants of STR mutation rates and built a model to predict rates for STRs across the genome. These predictions indicate that the load of de novo STR mutations is at least 75 mutations per generation, rivaling the load of all other known variant types. Finally, we identified Y-STRs with potential applications in forensics and genetic genealogy, assessed the ability to differentiate between the Y-chromosomes of father-son pairs, and imputed Y-STR genotypes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhongbo Chen ◽  
◽  
David Zhang ◽  
Regina H. Reynolds ◽  
Emil K. Gustavsson ◽  
...  

AbstractKnowledge of genomic features specific to the human lineage may provide insights into brain-related diseases. We leverage high-depth whole genome sequencing data to generate a combined annotation identifying regions simultaneously depleted for genetic variation (constrained regions) and poorly conserved across primates. We propose that these constrained, non-conserved regions (CNCRs) have been subject to human-specific purifying selection and are enriched for brain-specific elements. We find that CNCRs are depleted from protein-coding genes but enriched within lncRNAs. We demonstrate that per-SNP heritability of a range of brain-relevant phenotypes are enriched within CNCRs. We find that genes implicated in neurological diseases have high CNCR density, including APOE, highlighting an unannotated intron-3 retention event. Using human brain RNA-sequencing data, we show the intron-3-retaining transcript to be more abundant in Alzheimer’s disease with more severe tau and amyloid pathological burden. Thus, we demonstrate potential association of human-lineage-specific sequences in brain development and neurological disease.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Momchilo Vuyisich ◽  
Ayesha Arefin ◽  
Karen Davenport ◽  
Shihai Feng ◽  
Cheryl Gleasner ◽  
...  

Sequencing bacterial genomes has traditionally required large amounts of genomic DNA (~1 μg). There have been few studies to determine the effects of the input DNA amount or library preparation method on the quality of sequencing data. Several new commercially available library preparation methods enable shotgun sequencing from as little as 1 ng of input DNA. In this study, we evaluated the NEBNext Ultra library preparation reagents for sequencing bacterial genomes. We have evaluated the utility of NEBNext Ultra for resequencing andde novoassembly of four bacterial genomes and compared its performance with the TruSeq library preparation kit. The NEBNext Ultra reagents enable high quality resequencing andde novoassembly of a variety of bacterial genomes when using 100 ng of input genomic DNA. For the two most challenging genomes (Burkholderiaspp.), which have the highest GC content and are the longest, we also show that the quality of both resequencing andde novoassembly is not decreased when only 10 ng of input genomic DNA is used.


Sign in / Sign up

Export Citation Format

Share Document