scholarly journals Comparison of single gene and module-based methods for modeling gene regulatory networks

2018 ◽  
Author(s):  
Mikel Hernaez ◽  
Olivier Gevaert

AbstractGene regulatory networks describe the regulatory relationships among genes, and developing methods for reverse engineering these networks are an ongoing challenge in computational biology. The majority of the initially proposed methods for gene regulatory network discovery create a network of genes and then mine it in order to uncover previously unknown regulatory processes. More recent approaches have focused on inferring modules of co-regulated genes, linking these modules with regulator genes and then mining them to discover new molecular biology.In this work we analyze module-based network approaches to build gene regulatory networks, and compare their performance to the well-established single gene network approaches. In particular, we focus on the problem of linking genes with known regulatory genes. First, modules are created iteratively using a regression approach that links co-expressed genes with few regulatory genes. After the modules are built, we create bipartite graphs to identify a set of target genes for each regulatory gene. We analyze several methods for uncovering these modules and show that a variational Bayes approach achieves significant improvement with respect to previously used methods for module creation on both simulated and real data. We also perform a topological and gene set enrichment analysis and compare several module-based approaches to single gene network approaches where a graph is built from the gene expression profiles without clustering genes in modules. We show that the module-based approach with variational Bayes outperforms all other methods and creates regulatory networks with a significantly higher rate of enriched molecular pathways.The code is written in R and can be downloaded from https://github.com/mikelhernaez/linker.

2019 ◽  
Author(s):  
Mikel Hernaez ◽  
Charles Blatti ◽  
Olivier Gevaert

AbstractMotivationGene regulatory networks describe the regulatory relationships among genes, and developing methods for reverse engineering these networks is an ongoing challenge in computational biology. The majority of the initially proposed methods for gene regulatory network discovery create a network of genes and then mine it in order to uncover previously unknown regulatory processes. More recent approaches have focused on inferring modules of co-regulated genes, linking these modules with regulatory genes and then mining them to discover new molecular biology.ResultsIn this work we analyze module-based network approaches to build gene regulatory networks, and compare their performance to single gene network approaches. In the process, we propose a novel approach to estimate gene regulatory networks drawing from the module-based methods. We show that generating modules of co-expressed genes which are predicted by a sparse set of regulators using a variational Bayes method, and then building a bipartite graph on the generated modules using sparse regression, yields more informative networks than previous single and module-based network approaches as measured by: (i) the rate of enriched gene sets, (ii) a network topology assessment, (iii) ChIP-Seq evidence and (iv) the KnowEnG Knowledge Network collection of previously characterized gene-gene interactions.Availability and implementationThe code is written in R and can be downloaded from https://github.com/mikelhernaez/linker.Supplementary informationSupplementary data are available at Bioinformatics online.


2017 ◽  
Vol 15 (02) ◽  
pp. 1650045 ◽  
Author(s):  
Olga V. Petrovskaya ◽  
Evgeny D. Petrovskiy ◽  
Inna N. Lavrik ◽  
Vladimir A. Ivanisenko

Gene network modeling is one of the widely used approaches in systems biology. It allows for the study of complex genetic systems function, including so-called mosaic gene networks, which consist of functionally interacting subnetworks. We conducted a study of a mosaic gene networks modeling method based on integration of models of gene subnetworks by linear control functionals. An automatic modeling of 10,000 synthetic mosaic gene regulatory networks was carried out using computer experiments on gene knockdowns/knockouts. Structural analysis of graphs of generated mosaic gene regulatory networks has revealed that the most important factor for building accurate integrated mathematical models, among those analyzed in the study, is data on expression of genes corresponding to the vertices with high properties of centrality.


2008 ◽  
Vol 06 (05) ◽  
pp. 961-979 ◽  
Author(s):  
ANDRÉ FUJITA ◽  
JOÃO RICARDO SATO ◽  
HUMBERTO MIGUEL GARAY-MALPARTIDA ◽  
MARI CLEIDE SOGAYAR ◽  
CARLOS EDUARDO FERREIRA ◽  
...  

In cells, molecular networks such as gene regulatory networks are the basis of biological complexity. Therefore, gene regulatory networks have become the core of research in systems biology. Understanding the processes underlying the several extracellular regulators, signal transduction, protein–protein interactions, and differential gene expression processes requires detailed molecular description of the protein and gene networks involved. To understand better these complex molecular networks and to infer new regulatory associations, we propose a statistical method based on vector autoregressive models and Granger causality to estimate nonlinear gene regulatory networks from time series microarray data. Most of the models available in the literature assume linearity in the inference of gene connections; moreover, these models do not infer directionality in these connections. Thus, a priori biological knowledge is required. However, in pathological cases, no a priori biological information is available. To overcome these problems, we present the nonlinear vector autoregressive (NVAR) model. We have applied the NVAR model to estimate nonlinear gene regulatory networks based entirely on gene expression profiles obtained from DNA microarray experiments. We show the results obtained by NVAR through several simulations and by the construction of three actual gene regulatory networks (p53, NF-κB, and c-Myc) for HeLa cells.


2017 ◽  
Vol 34 (2) ◽  
pp. 258-266 ◽  
Author(s):  
Nan Papili Gao ◽  
S M Minhaz Ud-Dean ◽  
Olivier Gandrillon ◽  
Rudiyanto Gunawan

2015 ◽  
Vol 11 (9) ◽  
pp. e1004504 ◽  
Author(s):  
Vipin Narang ◽  
Muhamad Azfar Ramli ◽  
Amit Singhal ◽  
Pavanish Kumar ◽  
Gennaro de Libero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document