transcriptional expression
Recently Published Documents


TOTAL DOCUMENTS

337
(FIVE YEARS 107)

H-INDEX

31
(FIVE YEARS 6)

Author(s):  
Xavier León ◽  
Jacinto García ◽  
Albert Pujol ◽  
Julia de Juan ◽  
Rosselin Vásquez ◽  
...  

Abstract Purpose Proviral integration site for Moloney murine leukemia virus (PIMs) are proto-oncogenes encoding serine/threonine kinases that phosphorylate a variety of substrates involved in the regulation of cellular processes. Elevated expression of PIM-1 has been associated with poor prognosis in several types of cancer. There are no studies that have analyzed the response to radiotherapy in patients with head and neck squamous cell carcinoma (HNSCC) according to the expression of PIM-1. The aim of our study was to analyze the relationship between the transcriptional expression of PIM-1 and local response to radiotherapy in HNSCC patients. Methods We determined the transcriptional expression of PIM-1 in 135 HNSCC patients treated with radiotherapy, including patients treated with chemoradiotherapy (n = 65) and bioradiotherapy (n = 15). Results During the follow-up, 48 patients (35.6%) had a local recurrence of the tumor. Patients with local recurrence had a higher level of PIM-1 expression than those who achieved local control of the disease (P = 0.017). Five-year local recurrence-free survival for patients with a high expression of PIM-1 (n = 43) was 44.6% (95% CI 29.2–60.0%), and for patients with low expression (n = 92) it was 71.9% (95% CI 62.5–81.3%) (P = 0.007). According to the results of multivariate analysis, patients with a high PIM-1 expression had a 2.2-fold increased risk of local recurrence (95% CI 1.22–4.10, P = 0.009). Conclusion Patients with elevated transcriptional expression levels of PIM-1 had a significantly higher risk of local recurrence after radiotherapy.


2022 ◽  
Vol 71 ◽  
pp. 103183
Author(s):  
Rahat Alam ◽  
Sattyajit Biswas ◽  
Farhana Haque ◽  
Mohammad Turhan Pathan ◽  
Raihan Rahman Imon ◽  
...  

Author(s):  
Tamires Marielem Carvalho-Costa ◽  
Rafael Destro Rosa Tiveron ◽  
Maria Tays Mendes ◽  
Cecília Gomes Barbosa ◽  
Jessica Coraiola Nevoa ◽  
...  

Rhodnius neglectus is a potential vector of Trypanosoma cruzi (Tc), the causative agent of Chagas disease. The salivary glands (SGs) and intestine (INT) are actively required during blood feeding. The saliva from SGs is injected into the vertebrate host, modulating immune responses and favoring feeding for INT digestion. Tc infection significantly alters the physiology of these tissues; however, studies that assess this are still scarce. This study aimed to gain a better understanding of the global transcriptional expression of genes in SGs and INT during fasting (FA), fed (FE), and fed in the presence of Tc (FE + Tc) conditions. In FA, the expression of transcripts related to homeostasis maintenance proteins during periods of stress was predominant. Therefore, the transcript levels of Tret1-like and Hsp70Ba proteins were increased. Blood appeared to be responsible for alterations found in the FE group, as most of the expressed transcripts, such as proteases and cathepsin D, were related to digestion. In FE + Tc group, there was a decreased expression of blood processing genes for insect metabolism (e.g., Antigen-5 precursor, Pr13a, and Obp), detoxification (Sult1) in INT and acid phosphatases in SG. We also found decreased transcriptional expression of lipocalins and nitrophorins in SG and two new proteins, pacifastin and diptericin, in INT. Several transcripts of unknown proteins with investigative potential were found in both tissues. Our results also show that the presence of Tc can change the expression in both tissues for a long or short period of time. While SG homeostasis seems to be re-established on day 9, changes in INT are still evident. The findings of this study may be used for future research on parasite-vector interactions and contribute to the understanding of food physiology and post-meal/infection in triatomines.


2021 ◽  
pp. 1-9
Author(s):  
Hong Liu ◽  
Yong Zhang ◽  
Wenqiang Chen ◽  
Yan Zhang ◽  
Wen Zhang

BACKGROUND: Nasopharyngeal carcinoma (NPC), the common malignant head and neck cancer, is highly prevalent in southern China. The molecular mechanism underlying NPC tumorigenesis is unclear. We used 5-Aza-CdR, a DNA methyltransferase inhibitor, to treat NPC cell lines and discovered that the expression of TMEM130 changed significantly compared with the untreatment cells. This study aimed to identify the relationship between the DNA methylation status of TMEM130 and NPC, and to explore the function of TMEM130 in NPC cell migration. METHODS: qRT-PCR was performed to investigate the transcriptional expression of TMEM130 in NPC. Bisulfite sequencing PCR and 5-Aza-CdR treatment were used to detect the methylation level of the TMEM130 promoter. Gene Expression Omnibus (GEO) datasets were obtained to identifiy the methylation status and mRNA expression of TMEM130 in NPC and normal control tissues. Transwell and western blot analyses were used to detect cell migration ability after transfection of TMEM130/NC plasmids in NPC cells. RESULTS: The transcriptional expression of TMEM130 was decreased in NPC cell lines compared with in the NP69 cell line. TMEM130 promoter was significantly hyper methylated in three NPC cell lines (C666, CNE, and HONE) but hypo methylated in NP69 cells. The methylation level was higher in NPC than normal control tissues. Additionally, treatment of NPC cells with 5-Aza-CdR increased the TMEM130 mRNA expression level. Overexpression of TMEM130 in NPC cell lines suppressed cell migration ability and affected some epithelial-mesenchymal transition-associated gene expression. CONCLUSIONS: This study is the first to investigate the expression and function of TMEM130 in NPC. It was found that TMEM130 hyper methylation might contribute to NPC migration and this gene might act as a tumor suppressor gene. TMEM130 is a promising biomarker for NPC diagnosis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yoichi Yamada

Abstract Background In Saccharomyces cerevisiae, the retrograde signalling pathway is activated in ρ0/− cells, which lack mitochondrial DNA. Within this pathway, the activation of the transcription factor Pdr3 induces transcription of the ATP-binding cassette (ABC) transporter gene, PDR5, and causes pleiotropic drug resistance (PDR). Although a histone deacetylase, Rpd3, is also required for cycloheximide resistance in ρ0/− cells, it is currently unknown whether Rpd3 and its DNA binding partners, Ume6 and Ash1, are involved in the activation of PDR5 transcription and PDR in ρ0/− cells. This study investigated the roles of RPD3, UME6, and ASH1 in the activation of PDR5 transcription and PDR by retrograde signalling in ρ0 cells. Results ρ0 cells in the rpd3∆ and ume6∆ strains, with the exception of the ash1∆ strain, were sensitive to fluconazole and cycloheximide. The PDR5 mRNA levels in ρ0 cells of the rpd3∆ and ume6∆ strains were significantly reduced compared to the wild-type and ash1∆ strain. Transcriptional expression of PDR5 was reduced in cycloheximide-exposed and unexposed ρ0 cells of the ume6∆ strain; the transcriptional positive response of PDR5 to cycloheximide exposure was also impaired in this strain. Conclusions RPD3 and UME6 are responsible for enhanced PDR5 mRNA levels and PDR by retrograde signalling in ρ0 cells of S. cerevisiae.


2021 ◽  
Vol 22 (21) ◽  
pp. 12091
Author(s):  
Ansar Hussain ◽  
Muhammad Ifnan Khan ◽  
Mohammed Albaqami ◽  
Shahzadi Mahpara ◽  
Ijaz Rasool Noorka ◽  
...  

The WRKY transcription factors (TFs) network is composed of WRKY TFs’ subset, which performs a critical role in immunity regulation of plants. However, functions of WRKY TFs’ network remain unclear, particularly in non-model plants such as pepper (Capsicum annuum L.). This study functionally characterized CaWRKY30—a member of group III Pepper WRKY protein—for immunity of pepper against Ralstonia solanacearum infection. The CaWRKY30 was detected in nucleus, and its transcriptional expression levels were significantly upregulated by R. solanacearum inoculation (RSI), and foliar application ethylene (ET), abscisic acid (ABA), and salicylic acid (SA). Virus induced gene silencing (VIGS) of CaWRKY30 amplified pepper’s vulnerability to RSI. Additionally, the silencing of CaWRKY30 by VIGS compromised HR-like cell death triggered by RSI and downregulated defense-associated marker genes, like CaPR1, CaNPR1, CaDEF1, CaABR1, CaHIR1, and CaWRKY40. Conversely, transient over-expression of CaWRKY30 in pepper leaves instigated HR-like cell death and upregulated defense-related maker genes. Furthermore, transient over-expression of CaWRKY30 upregulated transcriptional levels of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40. On the other hand, transient over-expression of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40 upregulated transcriptional expression levels of CaWRKY30. The results recommend that newly characterized CaWRKY30 positively regulates pepper’s immunity against Ralstonia attack, which is governed by synergistically mediated signaling by phytohormones like ET, ABA, and SA, and transcriptionally assimilating into WRKY TFs networks, consisting of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40. Collectively, our data will facilitate to explicate the underlying mechanism of crosstalk between pepper’s immunity and response to RSI.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tinghao Li ◽  
Hang Tong ◽  
Hubin Yin ◽  
Yi Luo ◽  
Junlong Zhu ◽  
...  

Abstract Background Aberrant autophagy and preternatural elevated glycolysis are prevalent in bladder cancer (BLCA) and are both related to malignant progression. However, the regulatory relationship between autophagy and glycolytic metabolism remains largely unknown. We imitated starvation conditions in the tumour microenvironment and found significantly increased levels of autophagy and aerobic glycolysis, which both regulated the progression of BLCA cells. We further explored the regulatory relationships and mechanisms between them. Methods We used immunoblotting, immunofluorescence and transmission electron microscopy to detect autophagy levels in BLCA cells under different treatments. Lactate and glucose concentration detection demonstrated changes in glycolysis. The expression of lactate dehydrogenase A (LDHA) was detected at the transcriptional and translational levels and was also silenced by small interfering RNA, and the effects on malignant progression were further tested. The underlying mechanisms of signalling pathways were evaluated by western blot, immunofluorescence and immunoprecipitation assays. Results Starvation induced autophagy, regulated glycolysis by upregulating the expression of LDHA and caused progressive changes in BLCA cells. Mechanistically, after starvation, the ubiquitination modification of Axin1 increased, and Axin1 combined with P62 was further degraded by the autophagy–lysosome pathway. Liberated β-catenin nuclear translocation increased, binding with LEF1/TCF4 and promoting LDHA transcriptional expression. Additionally, high expression of LDHA was observed in cancer tissues and was positively related to progression. Conclusion Our study demonstrated that starvation-induced autophagy modulates glucose metabolic reprogramming by enhancing Axin1 degradation and β-catenin nuclear translocation in BLCA, which promotes the transcriptional expression of LDHA and further malignant progression.


2021 ◽  
Vol 12 ◽  
Author(s):  
Younes M. Rashad ◽  
Waleed M. E. Fekry ◽  
Mohamed M. Sleem ◽  
Nahla T. Elazab

Banana plants (Musa acuminata L.) are exposed to various biotic and abiotic stresses that affect their production worldwide. Banana plants respond to these stresses, but their responses to combined stresses are unique and differ from those to various individual stresses. This study reported the effects of the mycorrhizal colonization of banana roots and/or infection with root rot on the transcriptional expression of the responsive factor JERF3 and stress-responsive genes (POD, PR1, CHI, and GLU) under different salinity levels. Different transcriptional levels were recorded in response to the individual, dual, or triple treatments. All the applied biotic and abiotic stresses triggered the transcriptional expression of the tested genes when individually applied, but they showed different influences varying from synergistic to antagonistic when applied in combinations. The salinity stress had the strongest effect when applied in combination with the biotic stress and/or mycorrhizal colonization, especially at high concentrations. Moreover, the salinity level differentially affects the banana responses under combined stresses and/or mycorrhizal colonization in addition, the mycorrhizal colonization of banana plantlets improved their growth, photosynthesis, and nutrient uptake, as well as greatly alleviated the detrimental effects of salt and infection stresses. In general, the obtained results indicated that the responses of banana plantlets under the combined stresses are more complicated and differed from those under the individual stresses depending on the crosstalks between the signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document