scholarly journals The length distribution and multiple specificity of naturally presented HLA-I ligands

2018 ◽  
Author(s):  
David Gfeller ◽  
Philippe Guillaume ◽  
Justine Michaux ◽  
Hui-Song Pak ◽  
Roy T. Daniel ◽  
...  

AbstractHLA-I molecules bind short peptides and present them for recognition by CD8+ T cells. The length of HLA-I ligands typically ranges from 8 to 12 amino acids, but variability is observed across different HLA-I alleles. Here we collected recent in-depth HLA peptidomics data, including 12 newly generated HLA peptidomes (31,896 unique peptides) from human meningioma samples, to analyze the peptide length distribution and multiple specificity across 84 different HLA-I alleles. We observed a clear clustering of HLA-I alleles with distinct peptide length distributions, which enabled us to study the structural basis of peptide length distributions and predict peptide length distributions from HLA-I sequences. We further identified multiple specificity in several HLA-I molecules and validated these observations with binding assays. Explicitly modeling peptide length distribution and multiple specificity improved predictions of naturally presented HLA-I ligands, as demonstrated in an independent benchmarking based on the new human meningioma samples.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3364-3364
Author(s):  
Falk Heidenreich ◽  
Elke Ruecker-Braun ◽  
Juliane S. Stickel ◽  
Anne Eugster ◽  
Denise Kühn ◽  
...  

Abstract Background Immunotherapy for CLL with new antibodies or T-cells with modified TCR relies on attractive targets. ROR1 is such a promising target since it is highly overexpressed in CLL. Chimeric antigen receptor engineered T cells and antibodies directed against the extracellular part of ROR1 have already been developed and tested in vitro or in animal models, but still there is no MHC-class I presented peptide serving as target structure for CD8+ T cells (with or without a genetically modified T cell receptor) available. Aim The aim of this study was (1) to identify an immunogenic MHC-class I presented ROR1 peptide, (2) to generate respective ROR1 peptide specific CD8+ T cell clones, and (3) to analyze the nucleotide sequence of the CDR3 region of the expressed alpha and beta T cell receptor chain. Results In mass spectrometric-based analyses of the HLA-ligandome a HLA-B*07 presented ROR1 peptide was identified in primary CLL cells of two patients. Six T cell clones specific for this particular ROR1-peptide were generated from single CD8+ T cells from 2 healthy individuals with 3 T cell clones generated from each donor. Functionality and specificity of those T cell clones were tested in cytotoxicity assays. All 6 dextramer+ CD8+ T cell clones lysed peptide loaded and HLA-B*07+ transduced K562 cells (kindly provided by Lorenz Jahn, [Jahn et al., Blood, 2015 Feb 5;125(6):949-58]). Two selected clones (XD8 and XB6) were tested for their cytotoxic potential against 2 ROR1+ HLA-B*07+ tumor cell lines (with the ROR1 peptide identified by mass spectrometry for both of them) and against 2 primary CLL cell samples. Tested clones showed a significant lysis of the respective target cells. CDR3 regions of the alpha and beta T cell receptor chain were sequenced on a single cell level. The CDR3 alpha region from each of the 3 ROR1 specific T cell clones from donor A showed some similarities to T cell clones derived from donor B (Table 1). Conclusion For the first time a MHC-class I presented ROR1 peptide antigen is reported. ROR1 positive CLL cells can be targeted by specific HLA-B*07 restricted CTLs. Respective CD8+ T cell clones with anti-leukemic activity from 2 donors share some amino acid motifs of the CDR3 alpha and beta regions. In conclusion, this information provides the possibility of generating ROR1 specific CD8+ T cells with genetically modified T cell receptors for immunotherapy and for tracking those cells after administration with next generation sequencing in peripheral blood samples of patients. Furthermore, data suggest the existence of public TCR motifs in leukemia antigen specific CTLs, which needs to be proven in follow-up experiments with larger cohorts of donors and patients. Finally, the presented strategy to identify leukemia specific peptide antigens for CD8+ T cells might be an attractive method for similar projects. Table 1 Amino acid sequences of CDR3 alpha and beta regions of the TCR of ROR1 specific CD8+ T cell clones. When comparing two clones, matching amino acids are depicted in red. The aromatic amino acids phenylalanine (F) and tyrosine (Y) are shown in blue when situated at the same position. Gaps inserted during the sequence alignment process are indicated by a hyphen '-'. Table 1. Amino acid sequences of CDR3 alpha and beta regions of the TCR of ROR1 specific CD8+ T cell clones. When comparing two clones, matching amino acids are depicted in red. The aromatic amino acids phenylalanine (F) and tyrosine (Y) are shown in blue when situated at the same position. Gaps inserted during the sequence alignment process are indicated by a hyphen '-'. Disclosures Middeke: Sanofi: Honoraria. Schetelig:Sanofi: Honoraria.


2004 ◽  
Vol 85 (5) ◽  
pp. 1131-1143 ◽  
Author(s):  
Priti Kumar ◽  
Paramadevanapalli Sulochana ◽  
Gejjehalli Nirmala ◽  
Maganti Haridattatreya ◽  
Vijaya Satchidanandam

Our earlier identification of the non-structural protein 3 (NS3) of Japanese encephalitis virus (JEV) as a dominant CD4+ as well as CD8+ T cell-eliciting antigen in a healthy JEV-endemic cohort with a wide HLA distribution implied the presence of several epitopes dispersed over the length of the protein. Use of various truncated versions of NS3 in lymphocyte stimulation and interferon (IFN)-γ secretion assays revealed that amino acids (aa) 193–324 of NS3 were comparable with, if not superior to, the full-length protein in evoking Th1 responses. The potential of this 14·4 kDa stretch to stimulate IFN-γ production from both subtypes of T cells in a manner qualitatively and quantitatively similar to the 68 kDa parent protein suggested the presence within it of both class I and II epitopes and demonstrated that the entire immunogenicity of NS3 was focused on aa 193–324. Interestingly, this segment contained five of the eight helicase motifs of NS3. Analysis of variability of the NS3 protein sequence across 16 JEV isolates revealed complete identity of aa 219–318, which is contained within the above segment, suggesting that NS3-specific epitopes tend to cluster in relatively conserved regions that harbour functionally critical domains of the protein.


2012 ◽  
Vol 13 (3) ◽  
pp. 283-289 ◽  
Author(s):  
Anna M Bulek ◽  
David K Cole ◽  
Ania Skowera ◽  
Garry Dolton ◽  
Stephanie Gras ◽  
...  

2009 ◽  
Vol 206 (6) ◽  
pp. 1409-1422 ◽  
Author(s):  
Ildiko Van Rhijn ◽  
David C. Young ◽  
Annemieke De Jong ◽  
Jenny Vazquez ◽  
Tan-Yun Cheng ◽  
...  

The recent discovery of dideoxymycobactin (DDM) as a ligand for CD1a demonstrates how a nonribosomal lipopeptide antigen is presented to T cells. DDM contains an unusual acylation motif and a peptide sequence present only in mycobacteria, but its discovery raises the possibility that ribosomally produced viral or mammalian proteins that commonly undergo lipidation might also function as antigens. To test this, we measured T cell responses to synthetic acylpeptides that mimic lipoproteins produced by cells and viruses. CD1c presented an N-acyl glycine dodecamer peptide (lipo-12) to human T cells, and the response was specific for the acyl linkage as well as the peptide length and sequence. Thus, CD1c represents the second member of the CD1 family to present lipopeptides. lipo-12 was efficiently recognized when presented by intact cells, and unlike DDM, it was inactivated by proteases and augmented by protease inhibitors. Although lysosomes often promote antigen presentation by CD1, rerouting CD1c to lysosomes by mutating CD1 tail sequences caused reduction in lipo-12 presentation. Thus, although certain antigens require antigen processing in lysosomes, others are destroyed there, providing a hypothesis for the evolutionary conservation of large CD1 families containing isoforms that survey early endosomal pathways.


2012 ◽  
Vol 18 (5) ◽  
pp. 824-828 ◽  
Author(s):  
Katherina Siewert ◽  
Joachim Malotka ◽  
Naoto Kawakami ◽  
Hartmut Wekerle ◽  
Reinhard Hohlfeld ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document