scholarly journals Excretion initiates walking in the cricket Gryllus bimaculatus

2018 ◽  
Author(s):  
Keisuke Naniwa ◽  
Yasuhiro Sugimoto ◽  
Koichi Osuka ◽  
Hitoshi Aonuma

AbstractFeces contain information about the donor and potentially attracts both conspecifics and predators and parasites. The excretory system must be coordinated with other behaviors in insects. We found that crickets start walking forward following excretion of feces. Most intact crickets walked around the experimental arena, stopped at a particular site and raised up their body with a slight backward drift to excrete feces. After the feces dropped on the floor, the animal started walking with a random gait pattern away from the feces, and then changed the gait pattern to a tripod gait. Headless cricket also showed walking following excretion. In more than half of excretion events, headless crickets walked backward before excretion. The posture adopted during excretion was similar to that of intact crickets, and post-excretory forward walking was also observed. The occurrence rate of post-excretory walking was more than that of intact crickets. The gait pattern during forward walking was random and never transitioned to a tripod gait in the headless crickets. In animals whose abdominal nerve cords were cut, in any position, pre- or post-excretion walking was not shown in both intact and headless crickets, although they excreted feces. These results indicate that ascending signals from the terminal abdominal ganglion initiate leg movement through the neuronal circuits within thoracic ganglia, and that descending signals from the brain must regulate leg the motor circuit to express the appropriate walking gait.

2021 ◽  
Vol 8 ◽  
Author(s):  
Keisuke Naniwa ◽  
Hitoshi Aonuma

The cricket is one of the model animals used to investigate the neuronal mechanisms underlying adaptive locomotion. An intact cricket walks mostly with a tripod gait, similar to other insects. The motor control center of the leg movements is located in the thoracic ganglia. In this study, we investigated the walking gait patterns of the crickets whose ventral nerve cords were surgically cut to gain an understanding of how the descending signals from the head ganglia and ascending signals from the abdominal nervous system into the thoracic ganglia mediate the initiation and coordination of the walking gait pattern. Crickets whose paired connectives between the brain and subesophageal ganglion (SEG) (circumesophageal connectives) were cut exhibited a tripod gait pattern. However, when one side of the circumesophageal connectives was cut, the crickets continued to turn in the opposite direction to the connective cut. Crickets whose paired connectives between the SEG and prothoracic ganglion were cut did not walk, whereas the crickets exhibited an ordinal tripod gait pattern when one side of the connectives was intact. Crickets whose paired connectives between the metathoracic ganglion and abdominal ganglia were cut initiated walking, although the gait was not a coordinated tripod pattern, whereas the crickets exhibited a tripod gait when one side of the connectives was intact. These results suggest that the brain plays an inhibitory role in initiating leg movements and that both the descending signals from the head ganglia and the ascending signals from the abdominal nervous system are important in initiating and coordinating insect walking gait patterns.


2020 ◽  
Author(s):  
Keisuke Naniwa ◽  
Hitoshi Aonuma

AbstractThe cricket is one of the model animals used to investigate the neuronal mechanisms underlying adaptive locomotion. An intact cricket walks with a tripod gait, similar to other insects. The motor control center of the leg movements is located in the thoracic ganglia. In this study, we investigated the walking gait patterns of crickets whose ventral nerve cords were surgically cut to gain an understanding of how the descending signals from the head ganglia and ascending signals from the abdominal nervous system into the thoracic ganglia mediate the initiation and coordination of the walking gait pattern. Crickets whose paired connectives between the brain and subesophageal ganglion (SEG) were cut exhibited a tripod gait pattern. However, when one side of the connectives between the brain and SEG was cut, the crickets continued to turn in the opposite direction to the connective cut. Crickets whose paired connectives between the SEG and prothoracic ganglion were cut did not walk, whereas the crickets exhibited an ordinal tripod gait pattern when one side of the connectives was intact. Crickets whose paired connectives between the metathoracic ganglion and abdominal ganglia were cut initiated walking, although the gait was not a coordinated tripod pattern, whereas the crickets exhibited a tripod gait when one side of the connectives was intact. These results suggest that the brain plays an inhibitory role in initiating leg movements, and that both the descending signals from the head ganglia and the ascending signals from the abdominal nervous system are both important in initiating and coordinating insect walking gait patterns.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dai Owaki ◽  
Hitoshi Aonuma ◽  
Yasuhiro Sugimoto ◽  
Akio Ishiguro

AbstractInsects alter their walking pattern in order to respond to demands of an ever-changing environment, such as varying ground surface textures. They also exhibit resilient and flexible ability to retain the capacity to walk even after substantial changes in their body properties, e.g. leg amputation. While the motor control paradigm governing the inter-leg coordination in such adaptive walking has been extensively described in past studies, the mechanism remains unknown. Here, we examined this question by using the cricket (Gryllus bimaculatus), which shows a tetrapod/tripod gait on a flat surfaces, like many other insects. We performed leg amputation experiments to investigate modifications of leg movements and coordination of muscle activities. We simultaneously recorded (1) the leg movements, locomotion velocity, and body rotation and (2) the leg movements and leg muscles activities before and after leg amputation. Crickets displayed adaptive coordination of leg movement patterns in response to amputations. The activation timings of levator muscles in both middle legs tended to synchronize in phase when both legs were amputated at the coxatrochanteral joint. This supports the hypothesis that an intrinsic contralateral connection within the mesothoracic ganglion exists, and that mechanosensory feedback from the legs override this connection, resulting in the anti-phase movement of a normal gait.


Author(s):  
Wei Liu ◽  
John Kovaleski ◽  
Marcus Hollis

Robotic assisted rehabilitation, taking advantage of neuroplasticity, has been shown to be helpful in regaining some degree of gait performance. Robot-applied movement along with voluntary efferent motor commands coordinated with the robot allows optimization of motion training. We present the design and characteristics of a novel foot-based 6-degree-of-freedom (DOF) robot-assisted gait training system where the limb trajectory mirrored the normal walking gait. The goal of this study was to compare robot-assisted gait to normal walking gait, where the limb moved independently without robotics. Motion analysis was used to record the three-dimensional kinematics of the right lower extremity. Walking motion data were determined and transferred to the robotic motion application software for inclusion in the robotic trials where the robot computer software was programmed to produce a gait pattern in the foot equivalent to the gait pattern recorded from the normal walking gait trial. Results demonstrated that ankle; knee and hip joint motions produced by the robot are consistent with the joint motions in walking gait. We believe that this control algorithm provides a rationale for use in future rehabilitation, targeting robot-assisted training in people with neuromuscular disabilities such as stroke.


Author(s):  
Wenqi Hou ◽  
Jian Wang ◽  
Jianwen Wang ◽  
Hongxu Ma

In this paper, a novel online biped walking gait pattern generating method with contact consistency is proposed. Generally, it’s desirable that there is no foot-ground slipping during biped walking. By treating the hip of the biped robot as a linear inverted pendulum (LIP), a foot placement controller that takes the contact consistency into account is proposed to tracking the desired orbit energy. By selecting the hip’s horizontal locomotion as the parameter, the trajectories in task space for walking are planned. A task space controller without calculating the inversion of inertial matrix is presented. Simulation experiments are implemented on a virtual 5-link point foot biped robot. The results show the effectiveness of the walking pattern generating method which can realize a stable periodic gait cycle without slipping and falling even suffering a sudden disturbance.


2021 ◽  
pp. 1-35
Author(s):  
Sandesh G. Bhat ◽  
Susheelkumar Cherangara Subramanian ◽  
Thomas S Sugar ◽  
Sangram Redkar

Abstract In this work, the lower extremity physiological parameters are recorded during normal walking gait, and the dynamical systems theory is applied towards its stability analysis. The human walking gait pattern of kinematic and dynamical data is approximated to periodic behavior. The embedding dimension analysis of the kinematic variable's time trace and use of Taken's theorem allows us to compute a reduced-order time series that retains the essential dynamics. In conjunction with Floquet Theory, this approach can help study the system's stability characteristics. The Lyapunov-Floquet (L-F) Transformation application results in constructing an invariant manifold resembling the form of a simple oscillator system. It is also demonstrated that the simple oscillator system, when re-mapped back to the original domain, reproduces the original system's time evolution (hip angle or knee angle, for example). A re-initialization procedure is suggested that improves the accuracy between the processed data and actual data. The theoretical framework proposed in this work is validated with the experiments using a motion capture system.


2014 ◽  
Vol 2014.51 (0) ◽  
pp. _1320-1_-_1320-2_
Author(s):  
Takaya YAMAGUCHI ◽  
Naoki NISIKAWA ◽  
Garuda FUJII ◽  
Masayuki NAKAMURA

Author(s):  
Keisuke NANIWA ◽  
Hitoshi AONUMA ◽  
Yasuhiro SUGIMOTO ◽  
Koichi OSUKA
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document