scholarly journals Neural underpinnnings of auditory salience natural soundscapes

2018 ◽  
Author(s):  
Nicholas Huang ◽  
Mounya Elhilali

Salience is the mechanism whereby attention is automatically directed towards critical stimuli. Measuring the salience of a stimulus using behavioral methods risks confounds with top-down attention, particularly in the case of natural soundscapes. A distraction paradigm is employed here to measure physiological effects of salient auditory stimuli using electroencephalography. Several such effects are presented. In particular, a stimulus entrainment response is reduced by the presentation of distractor salient sounds. A reduction in oscillatory neural responses in the gamma frequency band is also observed following salient stimuli. These measures are used to identify salient portions of the natural scene. Finally, envelope decoding methods also indicate that salient stimuli attract attention away from other, task-related sounds.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chloé Stengel ◽  
Marine Vernet ◽  
Julià L. Amengual ◽  
Antoni Valero-Cabré

AbstractCorrelational evidence in non-human primates has reported increases of fronto-parietal high-beta (22–30 Hz) synchrony during the top-down allocation of visuo-spatial attention. But may inter-regional synchronization at this specific frequency band provide a causal mechanism by which top-down attentional processes facilitate conscious visual perception? To address this question, we analyzed electroencephalographic (EEG) signals from a group of healthy participants who performed a conscious visual detection task while we delivered brief (4 pulses) rhythmic (30 Hz) or random bursts of Transcranial Magnetic Stimulation (TMS) to the right Frontal Eye Field (FEF) prior to the onset of a lateralized target. We report increases of inter-regional synchronization in the high-beta band (25–35 Hz) between the electrode closest to the stimulated region (the right FEF) and right parietal EEG leads, and increases of local inter-trial coherence within the same frequency band over bilateral parietal EEG contacts, both driven by rhythmic but not random TMS patterns. Such increases were accompained by improvements of conscious visual sensitivity for left visual targets in the rhythmic but not the random TMS condition. These outcomes suggest that high-beta inter-regional synchrony can be modulated non-invasively and that high-beta oscillatory activity across the right dorsal fronto-parietal network may contribute to the facilitation of conscious visual perception. Our work supports future applications of non-invasive brain stimulation to restore impaired visually-guided behaviors by operating on top-down attentional modulatory mechanisms.


2019 ◽  
Vol 31 (5) ◽  
pp. 768-779 ◽  
Author(s):  
Justin Riddle ◽  
Kai Hwang ◽  
Dillan Cellier ◽  
Sofia Dhanani ◽  
Mark D'Esposito

Beta and gamma frequency neuronal oscillations have been implicated in top–down and bottom–up attention. In this study, we used rhythmic TMS to modulate ongoing beta and gamma frequency neuronal oscillations in frontal and parietal cortex while human participants performed a visual search task that manipulates bottom–up and top–down attention (single feature and conjunction search). Both task conditions will engage bottom–up attention processes, although the conjunction search condition will require more top–down attention. Gamma frequency TMS to superior precentral sulcus (sPCS) slowed saccadic RTs during both task conditions and induced a response bias to the contralateral visual field. In contrary, beta frequency TMS to sPCS and intraparietal sulcus decreased search accuracy only during the conjunction search condition that engaged more top–down attention. Furthermore, beta frequency TMS increased trial errors specifically when the target was in the ipsilateral visual field for the conjunction search condition. These results indicate that beta frequency TMS to sPCS and intraparietal sulcus disrupted top–down attention, whereas gamma frequency TMS to sPCS disrupted bottom–up, stimulus-driven attention processes. These findings provide causal evidence suggesting that beta and gamma oscillations have distinct functional roles for cognition.


2013 ◽  
Vol 25 (2) ◽  
pp. 175-187 ◽  
Author(s):  
Jihoon Oh ◽  
Jae Hyung Kwon ◽  
Po Song Yang ◽  
Jaeseung Jeong

Neural responses in early sensory areas are influenced by top–down processing. In the visual system, early visual areas have been shown to actively participate in top–down processing based on their topographical properties. Although it has been suggested that the auditory cortex is involved in top–down control, functional evidence of topographic modulation is still lacking. Here, we show that mental auditory imagery for familiar melodies induces significant activation in the frequency-responsive areas of the primary auditory cortex (PAC). This activation is related to the characteristics of the imagery: when subjects were asked to imagine high-frequency melodies, we observed increased activation in the high- versus low-frequency response area; when the subjects were asked to imagine low-frequency melodies, the opposite was observed. Furthermore, we found that A1 is more closely related to the observed frequency-related modulation than R in tonotopic subfields of the PAC. Our findings suggest that top–down processing in the auditory cortex relies on a mechanism similar to that used in the perception of external auditory stimuli, which is comparable to early visual systems.


2021 ◽  
Vol 150 (4) ◽  
pp. A64-A64
Author(s):  
Jasmine Kwasa ◽  
Abigail Noyce ◽  
Barbara Shinn-Cunningham

2017 ◽  
Vol 29 (3) ◽  
pp. 643-678
Author(s):  
Thomas Burwick ◽  
Alexandros Bouras

The communication-through-coherence (CTC) hypothesis states that a sending group of neurons will have a particularly strong effect on a receiving group if both groups oscillate in a phase-locked (“coherent”) manner (Fries, 2005 , 2015 ). Here, we consider a situation with two visual stimuli, one in the focus of attention and the other distracting, resulting in two sites of excitation at an early cortical area that project to a common site in a next area. Taking a modeler’s perspective, we confirm the workings of a mechanism that was proposed by Bosman et al. ( 2012 ) in the context of providing experimental evidence for the CTC hypothesis: a slightly higher gamma frequency of the attended sending site compared to the distracting site may cause selective interareal synchronization with the receiving site if combined with a slow-rhythm gamma phase reset. We also demonstrate the relevance of a slightly lower intrinsic frequency of the receiving site for this scenario. Moreover, we discuss conditions for a transition from bottom-up to top-down driven phase locking.


2020 ◽  
Vol 8 (5) ◽  
pp. 872-889 ◽  
Author(s):  
Paige Ethridge ◽  
Nida Ali ◽  
Sarah E. Racine ◽  
Jens C. Pruessner ◽  
Anna Weinberg

Both abnormal stress and reward responsivity are consistently linked to multiple forms of psychopathology; however, the nature of the associations between stress and reward sensitivity remains poorly understood. In the present study, we examined associations between the hypothalamic-pituitary-adrenal-axis stress response and event-related potentials sensitive to the receipt of reward-related feedback in a pre–post experimental paradigm. Neural responses were recorded while male participants completed a simple monetary-reward guessing task before and after the Montreal Imaging Stress Task. Results demonstrated that acute psychosocial stress significantly reduced the magnitude of neural responses to feedback in the reward-sensitive delta-frequency band but not the loss-sensitive theta-frequency band. In addition, a larger delta-frequency response to rewards at baseline predicted reduced overall cortisol response in the stress condition. These findings suggest, therefore, that neural reward circuitry may be associated with both risk for and resilience to stress-related psychopathology.


2005 ◽  
Vol 94 (1) ◽  
pp. 479-490 ◽  
Author(s):  
J. Andrew Henrie ◽  
Robert Shapley

We recorded local field potentials (LFPs) and single-unit activity simultaneously in the macaque primary visual cortex (V1) and studied their responses to drifting sinusoidal gratings that were chosen to be “optimal” for the single units. Over all stimulus conditions, the LFP spectra have much greater power in the low-frequency band (≤10 Hz) than higher frequencies and can be described as “1/f.” Analysis of the total power limited to the low, gamma (25–90 Hz), or broad (8–240 Hz) frequency bands of the LFP as a function of stimulus contrast indicates that the LFP power gradually increases with stimulus strength across a wide band in a manner roughly comparable to the increase in the simultaneously recorded spike activity. However, the low-frequency band power remains approximately constant across all stimulus contrasts. More specifically the gamma-band LFP power increases differentially more with respect to baseline than either higher or lower bands as stimulus contrast increases. At the highest stimulus contrasts, we report as others have previously, that the power spectrum of the LFP typically contains an obvious peak in the gamma-frequency band. The gamma-band peak emerges from the overall broadband enhancement in LFP power at stimulus contrasts where most single units' responses have begun to saturate. The temporal/spectral structures of the LFP located in the gamma band—which become most evident at the highest contrasts—provide additional constraints on potential mechanisms underlying the stimulus response properties of spiking neurons in V1.


Sign in / Sign up

Export Citation Format

Share Document