scholarly journals Pathway-specific asymmetries between ON and OFF visual signals

2018 ◽  
Author(s):  
Sneha Ravi ◽  
Daniel Ahn ◽  
Martin Greschner ◽  
E.J Chichilnisky ◽  
Greg D. Field

AbstractVisual processing is largely organized into ON and OFF pathways that signal stimulus increments and decrements, respectively. These pathways exhibit natural pairings based on morphological and physiological similarities, such as ON and OFF alpha ganglion cells in the mammalian retina. Several studies have noted asymmetries in the properties of ON and OFF pathways. For example, the spatial receptive fields (RFs) of OFF alpha cells are systematically smaller than ON alpha cells. Analysis of natural scenes suggests these asymmetries are optimal for visual encoding. To test the generality of ON-OFF asymmetries, we measured the spatiotemporal RF properties of multiple RGC types in rat retina. Through a quantitative and serial classification, we identified three functional pairs of ON and OFF RGCs. We analyzed the structure of their RFs and compared spatial integration, temporal integration, and gain across ON and OFF pairs. Similar to previous results from cat and primate, RGC types with larger spatial RFs exhibited briefer temporal integration and higher gain. However, each pair of ON and OFF RGC types exhibited distinct asymmetric relationships between receptive field properties, some of which were opposite to previous reports. These results reveal the functional organization of six RGC types in the rodent retina and indicate that ON-OFF asymmetries are pathway specific.Significance StatementCircuits that process sensory input frequently process increments separately from decrements, so called ‘ON’ and ‘OFF’ responses. Theoretical studies indicate this separation, and associated asymmetries in ON and OFF pathways, may be beneficial for encoding natural stimuli. However, the generality of ON and OFF pathway asymmetries has not been tested. Here we compare the functional properties of three distinct pairs of ON and OFF pathways in the rodent retina and show their asymmetries are pathway specific. These results provide a new view on the partitioning of vision across diverse ON and OFF signaling pathways

2018 ◽  
Author(s):  
Samuel A. Ocko ◽  
Jack Lindsey ◽  
Surya Ganguli ◽  
Stephane Deny

AbstractOne of the most striking aspects of early visual processing in the retina is the immediate parcellation of visual information into multiple parallel pathways, formed by different retinal ganglion cell types each tiling the entire visual field. Existing theories of efficient coding have been unable to account for the functional advantages of such cell-type diversity in encoding natural scenes. Here we go beyond previous theories to analyze how a simple linear retinal encoding model with different convolutional cell types efficiently encodes naturalistic spatiotemporal movies given a fixed firing rate budget. We find that optimizing the receptive fields and cell densities of two cell types makes them match the properties of the two main cell types in the primate retina, midget and parasol cells, in terms of spatial and temporal sensitivity, cell spacing, and their relative ratio. Moreover, our theory gives a precise account of how the ratio of midget to parasol cells decreases with retinal eccentricity. Also, we train a nonlinear encoding model with a rectifying nonlinearity to efficiently encode naturalistic movies, and again find emergent receptive fields resembling those of midget and parasol cells that are now further subdivided into ON and OFF types. Thus our work provides a theoretical justification, based on the efficient coding of natural movies, for the existence of the four most dominant cell types in the primate retina that together comprise 70% of all ganglion cells.


2017 ◽  
Vol 27 (08) ◽  
pp. 1750045 ◽  
Author(s):  
Eduardo Sánchez ◽  
Rubén Ferreiroa ◽  
Adrián Arias ◽  
Luis M. Martínez

The center–surround organization of the receptive fields (RFs) of retinal ganglion cells highlights the presence of local contrast in visual stimuli. As RF of thalamic relay cells follow the same basic functional organization, it is often assumed that they contribute very little to alter the retinal output. However, in many species, thalamic relay cells largely outnumber their retinal inputs, which diverge to contact simultaneously several units at thalamic level. This gain in cell population as well as retinothalamic convergence opens the door to question how information about contrast is transformed at the thalamic stage. Here, we address this question using a realistic dynamic model of the retinothalamic circuit. Our results show that different components of the thalamic RF might implement filters that are analogous to two types of well-known image processing techniques to preserve the quality of a higher resolution version of the image on its way to the primary visual cortex.


2018 ◽  
Author(s):  
Niru Maheswaranathan ◽  
Lane T. McIntosh ◽  
Hidenori Tanaka ◽  
Satchel Grant ◽  
David B. Kastner ◽  
...  

AbstractUnderstanding how the visual system encodes natural scenes is a fundamental goal of sensory neuroscience. We show here that a three-layer network model predicts the retinal response to natural scenes with an accuracy nearing the fundamental limits of predictability. The model’s internal structure is interpretable, in that model units are highly correlated with interneurons recorded separately and not used to fit the model. We further show the ethological relevance to natural visual processing of a diverse set of phenomena of complex motion encoding, adaptation and predictive coding. Our analysis uncovers a fast timescale of visual processing that is inaccessible directly from experimental data, showing unexpectedly that ganglion cells signal in distinct modes by rapidly (< 0.1 s) switching their selectivity for direction of motion, orientation, location and the sign of intensity. A new approach that decomposes ganglion cell responses into the contribution of interneurons reveals how the latent effects of parallel retinal circuits generate the response to any possible stimulus. These results reveal extremely flexible and rapid dynamics of the retinal code for natural visual stimuli, explaining the need for a large set of interneuron pathways to generate the dynamic neural code for natural scenes.


1979 ◽  
Vol 204 (1157) ◽  
pp. 435-454 ◽  

Single neurons recorded from the owl’s visual Wulst are surprisingly similar to those found in mammalian striate cortex. The receptive fields of Wulst neurons are elaborated, in an apparently hierarchical fashion,from those of their monocular, concentrically organized inputs to produce binocular interneurons with increasingly sophisticated requirements for stimulus orientation, movement and binocular disparity. Output neurons located in the superficial laminae of the Wulst are the most sophisticated of all, with absolute requirements for a combination of stimuli, which include binocular presentation at a particular horizontal binocular dis­parity, and with no response unless all of the stimulus conditions are satisfied simultaneously. Such neurons have the properties required for ‘global stereopsis,’ including a receptive field size many times larger than their optimal stimulus, which is more closely matched to the receptive fields of the simpler, disparity-selective interneurons. These marked similarities in functional organization between the avian and mammalian systems exist in spite of a number of structural differences which reflect their separate evolutionary origins. Discussion therefore includes the possibility that there may exist for nervous systems only a very small number of possible solutions, perhaps a unique one, to the problem of stereopsis.


2007 ◽  
Vol 24 (2) ◽  
pp. 217-230 ◽  
Author(s):  
GAËLLE DESBORDES ◽  
MICHELE RUCCI

During visual fixation, small eye movements keep the retinal image continuously in motion. It is known that neurons in the visual system are sensitive to the spatiotemporal modulations of luminance resulting from this motion. In this study, we examined the influence of fixational eye movements on the statistics of neural activity in the macaque's retina during the brief intersaccadic periods of natural visual fixation. The responses of parvocellular (P) and magnocellular (M) ganglion cells in different regions of the visual field were modeled while their receptive fields scanned natural images following recorded traces of eye movements. Immediately after the onset of fixation, wide ensembles of coactive ganglion cells extended over several degrees of visual angle, both in the central and peripheral regions of the visual field. Following this initial pattern of activity, the covariance between the responses of pairs of P and M cells and the correlation between the responses of pairs of M cells dropped drastically during the course of fixation. Cell responses were completely uncorrelated by the end of a typical 300-ms fixation. This dynamic spatial decorrelation of retinal activity is a robust phenomenon independent of the specifics of the model. We show that it originates from the interaction of three factors: the statistics of natural scenes, the small amplitudes of fixational eye movements, and the temporal sensitivities of ganglion cells. These results support the hypothesis that fixational eye movements, by shaping the statistics of retinal activity, are an integral component of early visual representations.


1997 ◽  
Vol 14 (6) ◽  
pp. 1153-1165 ◽  
Author(s):  
Stewart A. Bloomfield ◽  
Daiyan Xin

AbstractRecent studies have shown that amacrine and ganglion cells in the mammalian retina are extensively coupled as revealed by the intercellular movement of the biotinylated tracers biocytin and Neurobiotin. These demonstrations of tracer coupling suggest that electrical networks formed by proximal neurons (i.e. amacrine and ganglion cells) may underlie the lateral propagation of signals across the inner retina. We studied this question by comparing the receptive-field size, dendritic-field size, and extent of tracer coupling of amacrine and ganglion cells in the dark-adapted, supervised, isolated retina eyecup of the rabbit. Our results indicate that while the center-receptive fields of proximal neurons are approximately 15% larger than their corresponding dendritic diameters, this slight difference can be explained by factors other than electrical coupling such as tissue shrinkage associated with histological processing. However, the extent of tracer coupling of amacrine and ganglion cells was, on average, about twice the size of the corresponding receptive fields. Thus, the receptive field of an individual proximal neuron matched far more closely to its dendritic diameter than to the size of the tracer-coupled network of cells to which it belonged. The exception to this rule was the AII amacrine cells for which center-receptive fields were 2–3 times the size of their dendritic diameters but matched closely to the size of the tracer-coupled arrays. Thus, with the exception of AII cells, our data indicate that tracer coupling between proximal neurons is not associated with an enlargement of their receptive fields. Our results, then, provide no evidence for electrical coupling or, at least, indicate that extensive lateral spread of visual signals does not occur in the proximal mammalian retina.


Author(s):  
Alexandra Kling ◽  
Alex R. Gogliettino ◽  
Nishal P. Shah ◽  
Eric G. Wu ◽  
Nora Brackbill ◽  
...  

ABSTRACTThe functional organization of diverse retinal ganglion cell (RGC) types, which shapes the visual signal transmitted to the brain, has been examined in many species. The unique spatial, temporal, and chromatic properties of the numerically dominant RGC types in macaque monkey retina are presumed to most accurately model human vision. However, the functional similarity between RGCs in macaques and humans has only begun to be tested, and recent work suggests possible differences. Here, the properties of the numerically dominant human RGC types were examined using large-scale multi-electrode recordings with fine-grained visual stimulation in isolated retina, and compared to results from dozens of recordings from macaque retina using the same experimental methods and conditions. The properties of four major human RGC types -- ON-parasol, OFF-parasol, ON-midget, and OFF-midget -- closely paralleled those of the same macaque RGC types, including the spatial and temporal light sensitivity, precisely coordinated mosaic organization of receptive fields, ON-OFF asymmetries, spatial response nonlinearity, and sampling of photoreceptor inputs over space. Putative smooth monostratified cells and polyaxonal amacrine cells were also identified based on similarities to cell types previously identified in macaque retina. The results suggest that recently proposed differences between human and macaque RGCs probably reflect experimental differences, and that the macaque model provides an accurate picture of human RGC function.


2020 ◽  
Author(s):  
Brent K. Young ◽  
Charu Ramakrishnan ◽  
Tushar Ganjawala ◽  
Yumei Li ◽  
Sangbae Kim ◽  
...  

AbstractNeurons in the CNS are distinguished from each other by their morphology, the types of the neurotransmitter they release, their synaptic connections, and their genetic profiles. While attempting to characterize the retinal bipolar cell (BC) input to retinal ganglion cells (RGCs), we discovered a previously undescribed type of interneuron in mice and primates. This interneuron shares some morphological, physiological, and molecular features with traditional BCs, such as having dendrites that ramify in the outer plexiform layer (OPL) and axons that ramify in the inner plexiform layer (IPL) to relay visual signals from photoreceptors to inner retinal neurons. It also shares some features with amacrine cells, particularly Aii amacrine cells, such as their axonal morphology and possibly the release of the inhibitory neurotransmitter glycine, along with the expression of some amacrine cell specific markers. Thus, we unveil an unrecognized type of interneuron, which may play unique roles in vision.Significance StatementCell types are the building blocks upon which neural circuitry is based. In the retina, it is widely believed that all neuronal types have been identified. We describe a cell type, which we call the Campana cell, that does not fit into the conventional neuronal retina categories but is evolutionarily conserved. Unlike retinal bipolar cells, the Campana cell receives synaptic input from both rods and cones, has broad axonal ramifications, and may release an inhibitory neurotransmitter. Unlike retinal amacrine cells, the Campana cell receives direct photoreceptor input has bipolar-like ribbon synapses. With this discovery, we open the possibility for new forms of visual processing in the retina.


2013 ◽  
Vol 110 (6) ◽  
pp. 1426-1440 ◽  
Author(s):  
Stefano Di Marco ◽  
Dario A. Protti ◽  
Samuel G. Solomon

The ON and OFF pathways that emerge at the first synapse in the retina are generally thought to be streamed in parallel to higher visual areas, but recent work shows cross talk at the level of retinal ganglion cells. The ON pathway drives inhibitory inputs onto some OFF ganglion cells, such that these neurons show “push-pull” convergence of OFF-excitation and ON-disinhibition. In this study we measure the spatial receptive field of excitatory and inhibitory inputs to OFF-sustained (OFF-S) retinal ganglion cells of mouse, establish how contrast adaptation modulates excitatory and inhibitory synaptic inputs, and show the pharmacology of the inhibitory inputs. We find that the spatial tuning properties of excitatory and inhibitory inputs are sufficient to determine the spatial profile of the spike output and that high spatial acuity may be particularly reliant on disinhibitory circuits. Contrast adaptation reduced excitation to OFF-S ganglion cells, as expected, and also unmasked an asymmetry in inhibitory inputs: disinhibition at light-off was immune to contrast adaptation, but inhibition at light-on was substantially reduced. In pharmacological experiments we confirm that inhibitory inputs are partly mediated by glycine, but our measurements also suggest a substantial role for GABA. Our observations therefore reveal functional diversity in the inhibitory inputs to OFF ganglion cells and suggest that in addition to enhancing operational range these inputs help shape the spatial receptive fields of ganglion cells.


2016 ◽  
Author(s):  
Alexander Heitman ◽  
Nora Brackbill ◽  
Martin Greschner ◽  
Alexander Sher ◽  
Alan M. Litke ◽  
...  

A central goal of systems neuroscience is to develop accurate quantitative models of how neural circuits process information. Prevalent models of light response in retinal ganglion cells (RGCs) usually begin with linear filtering over space and time, which reduces the high-dimensional visual stimulus to a simpler and more tractable scalar function of time that in turn determines the model output. Although these pseudo-linear models can accurately replicate RGC responses to stochastic stimuli, it is unclear whether the strong linearity assumption captures the function of the retina in the natural environment. This paper tests how accurately one pseudo-linear model, the generalized linear model (GLM), explains the responses of primate RGCs to naturalistic visual stimuli. Light responses from macaque RGCs were obtained using large-scale multi-electrode recordings, and two major cell types, ON and OFF parasol, were examined. Visual stimuli consisted of images of natural environments with simulated saccadic and fixational eye movements. The GLM accurately reproduced RGC responses to white noise stimuli, as observed previously, but did not generalize to predict RGC responses to naturalistic stimuli. It also failed to capture RGC responses when fitted and tested with naturalistic stimuli alone. Fitted scalar nonlinearities before and after the linear filtering stage were insufficient to correct the failures. These findings suggest that retinal signaling under natural conditions cannot be captured by models that begin with linear filtering, and emphasize the importance of additional spatial nonlinearities, gain control, and/or peripheral effects in the first stage of visual processing.


Sign in / Sign up

Export Citation Format

Share Document