Image Sharpness and Contrast Tuning in the Early Visual Pathway

2017 ◽  
Vol 27 (08) ◽  
pp. 1750045 ◽  
Author(s):  
Eduardo Sánchez ◽  
Rubén Ferreiroa ◽  
Adrián Arias ◽  
Luis M. Martínez

The center–surround organization of the receptive fields (RFs) of retinal ganglion cells highlights the presence of local contrast in visual stimuli. As RF of thalamic relay cells follow the same basic functional organization, it is often assumed that they contribute very little to alter the retinal output. However, in many species, thalamic relay cells largely outnumber their retinal inputs, which diverge to contact simultaneously several units at thalamic level. This gain in cell population as well as retinothalamic convergence opens the door to question how information about contrast is transformed at the thalamic stage. Here, we address this question using a realistic dynamic model of the retinothalamic circuit. Our results show that different components of the thalamic RF might implement filters that are analogous to two types of well-known image processing techniques to preserve the quality of a higher resolution version of the image on its way to the primary visual cortex.

2019 ◽  
Vol 29 (1) ◽  
pp. 1226-1234
Author(s):  
Safa Jida ◽  
Hassan Ouallal ◽  
Brahim Aksasse ◽  
Mohammed Ouanan ◽  
Mohamed El Amraoui ◽  
...  

Abstract This work intends to apprehend and emphasize the contribution of image-processing techniques and computer vision in the treatment of clay-based material known in Meknes region. One of the various characteristics used to describe clay in a qualitative manner is porosity, as it is considered one of the properties that with “kill or cure” effectiveness. For this purpose, we use scanning electron microscopy images, as they are considered the most powerful tool for characterising the quality of the microscopic pore structure of porous materials. We present various existing methods of segmentation, as we are interested only in pore regions. The results show good matching between physical estimation and Voronoi diagram-based porosity estimation.


1989 ◽  
Vol 94 (6) ◽  
pp. 987-995 ◽  
Author(s):  
J B Troy ◽  
C Enroth-Cugell

We examined the dependence of the center radius of X cells on temporal frequency and found that at temporal frequencies above 40 Hz the radius increases in a monotonic fashion, reaching a size approximately 30% larger at 70 Hz. This kind of spatial expansion has been predicted with cable models of receptive fields where inductive elements are included in modeling the neuronal membranes. Hence, the expansion of the center radius is clearly important for modeling X cell receptive fields. On the other hand, we feel that it might be of only minor functional significance, since the responsivity of X cells is attenuated at these high temporal frequencies and the signal-to-noise ratio is considerably worse than at low and midrange temporal frequencies.


1998 ◽  
Vol 15 (1) ◽  
pp. 161-175 ◽  
Author(s):  
BARRY B. LEE ◽  
JAN KREMERS ◽  
TSAIYAO YEH

We have reinvestigated receptive-field structure of ganglion cells of the macaque parafovea using counterphase modulation of a bipartite field. Receptive fields were mapped with luminance, chromatic, and cone-isolating stimuli. Center sizes of middle (M) and long (L) wavelength cone opponent cells of the parvocellular (PC) pathway were consistent with previous estimates (Gaussian radii of 2–4 min of arc, corresponding to center diameters of 6–12 min of arc). We calculate that a large factor of the enlargement relative to cone radius could be blur due to the eye's natural optics. Maps were consistent with cone selectivity in surround mechanisms, which had radii of 5–8 min of arc. For magnocellular (MC) cells, center size estimates were also consistent with grating measurements from the literature (also Gaussian radii of 2–4 min of arc). The surround mechanism contributing the MC-cell frequency-doubled response to chromatic modulation appears to possess a subunit structure, and we speculate it derives from nonlinear summation of signals from M,L-cone opponent subunits, such as midget bipolar cells.


2000 ◽  
Vol 17 (2) ◽  
pp. 263-271 ◽  
Author(s):  
HIROYUKI UCHIYAMA ◽  
TAKAHIDE KANAYA ◽  
SHOICHI SONOHATA

One type of retinal ganglion cells prefers object motion in a particular direction. Neuronal mechanisms for the computation of motion direction are still unknown. We quantitatively mapped excitatory and inhibitory regions of receptive fields for directionally selective retinal ganglion cells in the Japanese quail, and found that the inhibitory regions are displaced about 1–3 deg toward the side where the null sweep starts, relative to the excitatory regions. Directional selectivity thus results from delayed transient suppression exerted by the nonconcentrically arranged inhibitory regions, and not by local directional inhibition as hypothesized by Barlow and Levick (1965).


1976 ◽  
Vol 68 (4) ◽  
pp. 465-484 ◽  
Author(s):  
A W Kirby ◽  
C Enroth-Cugell

The effects of picrotoxin and bicuculline upon the discharge pattern of center-surround organized cat retinal ganglion cells of X and Y type were studied. All experiments were carried out under scotopic or possibly low mesopic conditions; mostly but not exclusively on-center cells were studied. Stimuli were chosen so that responses were either; (a) "purely" central; (b) surround dominated; or (c) clearly mixed but center dominated. In each case a pre-drug control response was estaboished, the drug was administered intravenously, and its subsequent effect upon the response was observed. In Y cells both picrotoxin and bicucullin caused the center-driven component of the response to become somewhat reduced in magnitude, while the surround component was substantially reduced. There was thus a change in center-surround balance in favor of the center-driven component. Responses of X cells remained virtually unaffected by both picrotoxin and bicuculline.


Sign in / Sign up

Export Citation Format

Share Document