scholarly journals Enemy release mitigates inbreeding depression in native and invasive Silene latifolia populations: experimental insight into the role of inbreeding × environment interactions in invasion success

2018 ◽  
Author(s):  
Karin Schrieber ◽  
Sabrina Wolf ◽  
Catherina Wypior ◽  
Diana Höhlig ◽  
Stephen R. Keller ◽  
...  

AbstractInbreeding and enemy infestation are common in plants and can synergistically reduce their performance. This inbreeding × environment (I×E) interaction may be of particular importance for the success of plant invasions if introduced populations experience a release from attack by natural enemies relative to their native conspecifics. Using native and invasive plant populations, we investigate whether inbreeding affects infestation damage, whether inbreeding depression in performance is mitigated by enemy release and whether genetic differentiation among native and invasive plants modifies these I×E interactions. We used the plant invader Silene latifolia and its natural enemies as a study system. We performed two generations of experimental out- and inbreeding within eight native (European) and eight invasive (North American) S. latifolia populations under controlled conditions using field-collected seeds. Subsequently, we exposed the offspring to an enemy exclusion and inclusion treatment in a common garden in the species’ native range to assess the interactive effects of population origin (range), breeding treatment and enemy treatment on infestation damage as well as plant performance. Inbreeding increased flower and leaf infestation damage in plants from both ranges, but had opposing effects on fruit damage in native versus invasive plants. Both inbreeding and enemy infestation had negative effects on plant performance, whereby inbreeding depression in fruit number was higher in enemy inclusions than exclusions in plants from both ranges. Moreover, the magnitude of inbreeding depression in fruit number was lower in invasive than native populations. Our results support that inbreeding increases enemy susceptibility of S. latifolia, which magnifies inbreeding depression in the presence of enemies. Enemy release in the invaded habitat may thus increase the persistence of inbred founder populations and thereby contribute to successful invasion. Moreover, our findings emphasize that genetic differentiation among native and invasive plants can shape the magnitude and even the direction of inbreeding effects.

2016 ◽  
Author(s):  
Viet Thang Nguyen ◽  
Noel Ndihokubwayo ◽  
Dandan Cheng

Invasive plants escape from some natural enemies as predictions of Enemy Release Hypothesis (ERH). However, in fact they still have to face the pressure of generalist herbivores in introduced ranges resulting in the maintenance or enhancing of resistance ability to generalist herbivores. In this study, we carried out a general feeding bioassay in a laboratory with leaves of Senecio vulgaris to test the difference in resistance between ranges. White jade land snails (WJLD, Achatina fulica) were fed with the leaves of Pakchoi (Brassica chinensis), Lettuce (Lactuca sativa), native and invasive plants of S. vulgaris. The feeding experiment with S. vulgaris leaves was carried out in two waves. We found that both native and invasive S. vulgaris plant were resistant again to WJLD compared to Pakchoi and Lettuce. However, there were no significant differences between native and invasive plants of S. vulgaris in relation to the resistance against WJLD. The results prove the maintenance of chemical defense against generalist herbivores in invasive plants in introduced range. The success of S. vulgaris to invader China could not be explained by releasing from natural enemies but possessing of defense ability against herbivores before it introduced to China.


2016 ◽  
Author(s):  
Viet Thang Nguyen ◽  
Noel Ndihokubwayo ◽  
Dandan Cheng

Invasive plants escape from some natural enemies as predictions of Enemy Release Hypothesis (ERH). However, in fact they still have to face the pressure of generalist herbivores in introduced ranges resulting in the maintenance or enhancing of resistance ability to generalist herbivores. In this study, we carried out a general feeding bioassay in a laboratory with leaves of Senecio vulgaris to test the difference in resistance between ranges. White jade land snails (WJLD, Achatina fulica) were fed with the leaves of Pakchoi (Brassica chinensis), Lettuce (Lactuca sativa), native and invasive plants of S. vulgaris. The feeding experiment with S. vulgaris leaves was carried out in two waves. We found that both native and invasive S. vulgaris plant were resistant again to WJLD compared to Pakchoi and Lettuce. However, there were no significant differences between native and invasive plants of S. vulgaris in relation to the resistance against WJLD. The results prove the maintenance of chemical defense against generalist herbivores in invasive plants in introduced range. The success of S. vulgaris to invader China could not be explained by releasing from natural enemies but possessing of defense ability against herbivores before it introduced to China.


2021 ◽  
pp. 1-28
Author(s):  
Inés Ibáñez ◽  
Gang Liu ◽  
Laís Petri ◽  
Sam Schaffer-Morrison ◽  
Sheila Schueller

Abstract Risk assessments of biological invasions rarely account for native species performance and community features, but this assessment could provide additional insights for management aimed at decreasing vulnerability or increasing resistance of a plant community to invasions. To gather information on the drivers of native plant communities’ vulnerability and resistance to invasion, we conducted a literature search and meta-analysis. From the data collected we compared native and invasive plant performance between sites with high and low levels of invasion. We then investigated under which conditions native performance increased, decreased, or did not change with respect to invasive plants. We analyzed data from 214 publications summing to 506 observations. There were six main drivers of vulnerability to invasion: disturbance, decrease in resources, increase in resources, lack of biotic resistance, lack of natural enemies, and differences in propagule availability between native and invasive species. The two mechanisms of vulnerability to invasion associated with a strong decline in native plant performance were propagule availability and lack of biotic resistance. Native plants marginally benefited from enemy release and from decreases in resources, while invasive plants strongly benefited from both increased resources and lack of enemies. Fluctuation of resources, decreases and increases, were strongly associated with higher invasive performance while native plants varied in their response. These differences were particularly strong in instances of decreasing water or nutrients, and of increasing light and nutrients. We found overall neutral to positive responses of native plant communities to disturbance; but natives were outperformed by invasive species when disturbance was caused by human activities. We identified ecosystem features associated with both vulnerability and resistance to invasion, then used our results to inform management aimed at protecting the native community.


2019 ◽  
Vol 9 (6) ◽  
pp. 3564-3576 ◽  
Author(s):  
Karin Schrieber ◽  
Sabrina Wolf ◽  
Catherina Wypior ◽  
Diana Höhlig ◽  
Stephen R. Keller ◽  
...  

2017 ◽  
Vol 98 (8) ◽  
pp. 1935-1944 ◽  
Author(s):  
Martyn Kurr ◽  
Andrew J. Davies

Invasive algae can have substantial negative impacts in their invaded ranges. One widely cited mechanism that attempts to explain how invasive plants and algae are often able to spread quickly, and even become dominant in their invaded ranges, is the Enemy Release Hypothesis. This study assessed the feeding behaviours of two species of gastropod herbivore from populations exposed to the invasive alga Sargassum muticum for different lengths of time. Feeding trials, consisting of both choice and no-choice, showed that the herbivores from older stands (35–40 years established) of S. muticum were more likely to feed upon it than those taken from younger (10–19 years established) stands. These findings provide evidence in support of the ERH, by showing that herbivores consumed less S. muticum if they were not experienced with it. These findings are in accordance with the results of other feeding-trials with S. muticum, but in contrast to research that utilizes observations of herbivore abundance and diversity to assess top-down pressure. The former tend to validate the ERH, and the latter typically reject it. The potential causes of this disparity are discussed, as are the importance of palatability, herbivore species and time-since-invasion when considering research into the ERH. This study takes an important, yet neglected, approach to the study of invasive ecology.


2020 ◽  
Vol 11 ◽  
Author(s):  
Francisco J. Jiménez-López ◽  
Pedro L. Ortiz ◽  
María Talavera ◽  
Montserrat Arista

Flower color polymorphism, an infrequent but phylogenetically widespread condition in plants, is captivating because it can only be maintained under a few selective regimes but also because it can drive intra-morph assortative mating and promote speciation. Lysimachia arvensis is a polymorphic species with red or blue flowered morphs. In polymorphic populations, which are mostly Mediterranean, pollinators prefer blue-flowered plants to the red ones, and abiotic factors also favors blue-flowered plants. We hypothesize that the red morph is maintained in Mediterranean areas due to its selfing capacity. We assessed inbreeding depression in both color morphs in two Mediterranean populations and genetic diversity was studied via SSR microsatellites in 20 natural populations. Results showed that only 44–47% of selfed progeny of the red plants reached reproduction while about 72–91% of blue morph progeny did it. Between-morph genetic differentiation was high and the red morph had a lower genetic diversity and a higher inbreeding coefficient, mainly in the Mediterranean. Results suggest that selfing maintaining the red morph in Mediterranean areas despite its inbreeding depression. In addition, genetic differentiation between morphs suggests a low gene flow between them, suggesting reproductive isolation.


AoB Plants ◽  
2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Yingchun Pei ◽  
Evan Siemann ◽  
Baoliang Tian ◽  
Jianqing Ding

Abstract Arbuscular mycorrhizal fungi (AMF) are important mutualistic microbes in soil, which have capacity to form mutualistic associations with most land plants. Arbuscular mycorrhizal fungi play an important role in plant invasions and their interactions with invasive plants have received increasing attention. However, the chemical mechanisms underlying the interactions of AMF and invasive plants are still poorly understood. In this study we aim to test whether root secondary chemicals are related to enhanced AMF colonization and rapid growth in an invasive tree. We conducted a common garden experiment in China with Chinese tallow tree (Triadica sebifera) to examine the relationships among AMF colonization and secondary metabolites in roots of plants from introduced (USA) and native (China) populations. We found that AMF colonization rate was higher in introduced populations compared to native populations. Roots of plants from introduced populations had lower levels of phenolics and tannins, but higher levels of flavonoids than those of plants from native populations. Flavonoids were positively correlated with AMF colonization, and this relationship was especially strong for introduced populations. Besides, AMF colonization was positively correlated with plant biomass suggesting that higher root flavonoids and AMF colonization may impact plant performance. This suggests that higher root flavonoids in plants from introduced populations may promote AMF spore germination and/or attract hyphae to their roots, which may subsequently increase plant growth. Overall, our results support a scenario in which invasive plants enhance their AMF association and invasion success via genetic changes in their root flavonoid metabolism. These findings advance our understanding of the mechanisms underlying plant invasion success and the evolutionary interactions between plants and AMF. Understanding such mechanisms of invasive plant success is critical for predicting and managing plant invasions in addition to providing important insights into the chemical mechanism of AMF–plant interactions.


2021 ◽  
Author(s):  
Anna Aldorfová ◽  
Věra Hanzelková ◽  
Lucie Drtinová ◽  
Hana Pánková ◽  
Tomáš Cajthaml ◽  
...  

Abstract Purpose: To compare plant-soil feedback (PSF) of invasive Cirsium vulgare and non-invasive C. oleraceum in their native range to test a hypothesis that the invasive species is more limited by specialized pathogens in the native range and/or able to benefit more from generalist mutualists, and thus may benefit more from loss of specialized soil biota in a secondary range.Methods: We assessed changes in soil nutrients and biota following soil conditioning by each species and compared performance of plants grown in self-conditioned and control soil, from which all, some or no biota was excluded. Results: The invasive species depleted more nutrients than the non-invasive species and coped better with altered nutrient levels. The invasive species had higher seedling emergence which benefited from presence of non-specific microbes. The invasive species biomass responded less positively to specialized (self-conditioned) microbiota and more negatively to specialized larger-sized biota compared to the non-specialized control biota, suggesting the species may benefit more from enemy release and suffer less from loss of specialized mutualists when introduced to a secondary range. The invasive species showed greater ability to decrease its root-shoot ratio in presence of harmful biota and thus reduce their negative effects on its performance.Conclusions: Our study highlights the utility of detailed PSF research in the native range of species for understanding the factors that regulate performance of invasive and non-invasive species in their native range, and for pinpointing the types of biota involved in their regulation and how this changes across the plants life cycle.


Sign in / Sign up

Export Citation Format

Share Document