scholarly journals Structural basis for substrate gripping and translocation by the ClpB AAA+ disaggregase

2018 ◽  
Author(s):  
Alexandrea N. Rizo ◽  
JiaBei Lin ◽  
Stephanie N. Gates ◽  
Eric Tse ◽  
Stephen M. Bart ◽  
...  

ABSTRACTBacterial ClpB and yeast Hsp104 are homologous Hsp100 protein disaggregases that serve critical functions in proteostasis by solubilizing protein aggregates. Two AAA+ nucleotide binding domains (NBDs) power polypeptide translocation through a central channel comprised of a hexameric spiral of protomers that contact substrate via conserved pore-loop interactions. To elucidate the translocation mechanism, we determined the cryo-EM structure of a hyperactive ClpB variant to 2.9 Å resolution bound to the model substrate, casein in the presence of slowly hydrolysable ATPγS. Distinct substrate-gripping mechanisms are identified for NBD1 and NBD2 pore loops. A trimer of N-terminal domains define a channel entrance that binds the polypeptide substrate adjacent the topmost NBD1 contact. NBD conformations at the spiral seam reveal how ATP hydrolysis and substrate engagement or disengagement are precisely tuned to drive a stepwise translocation cycle.

2008 ◽  
Vol 416 (1) ◽  
pp. 129-136 ◽  
Author(s):  
Luba Aleksandrov ◽  
Andrei Aleksandrov ◽  
John R. Riordan

ATP binding to the first and second NBDs (nucleotide-binding domains) of CFTR (cystic fibrosis transmembrane conductance regulator) are bivalent-cation-independent and -dependent steps respectively [Aleksandrov, Aleksandrov, Chang and Riordan (2002) J. Biol. Chem. 277, 15419–15425]. Subsequent to the initial binding, Mg2+ drives rapid hydrolysis at the second site, while promoting non-exchangeable trapping of the nucleotide at the first site. This occlusion at the first site of functional wild-type CFTR is somewhat similar to that which occurs when the catalytic glutamate residues in both of the hydrolytic sites of P-glycoprotein are mutated, which has been proposed to be the result of dimerization of the two NBDs and represents a transient intermediate formed during ATP hydrolysis [Tombline and Senior (2005) J. Bioenerg. Biomembr. 37, 497–500]. To test the possible relevance of this interpretation to CFTR, we have now characterized the process by which NBD1 occludes [32P]N3ATP (8-azido-ATP) and [32P]N3ADP (8-azido-ADP). Only N3ATP, but not N3ADP, can be bound initially at NBD1 in the absence of Mg2+. Despite the lack of a requirement for Mg2+ for ATP binding, retention of the NTP at 37 °C was dependent on the cation. However, at reduced temperature (4 °C), N3ATP remains locked in the binding pocket with virtually no reduction over a 1 h period, even in the absence of Mg2+. Occlusion occurred identically in a ΔNBD2 construct, but not in purified recombinant NBD1, indicating that the process is dependent on the influence of regions of CFTR in addition to NBD1, but not NBD2.


2020 ◽  
Vol 117 (13) ◽  
pp. 7159-7170 ◽  
Author(s):  
Michael K. Studer ◽  
Lazar Ivanović ◽  
Marco E. Weber ◽  
Sabrina Marti ◽  
Stefanie Jonas

RNA helicases of the DEAH/RHA family are involved in many essential cellular processes, such as splicing or ribosome biogenesis, where they remodel large RNA–protein complexes to facilitate transitions to the next intermediate. DEAH helicases couple adenosine triphosphate (ATP) hydrolysis to conformational changes of their catalytic core. This movement results in translocation along RNA, which is held in place by auxiliary C-terminal domains. The activity of DEAH proteins is strongly enhanced by the large and diverse class of G-patch activators. Despite their central roles in RNA metabolism, insight into the molecular basis of G-patch–mediated helicase activation is missing. Here, we have solved the structure of human helicase DHX15/Prp43, which has a dual role in splicing and ribosome assembly, in complex with the G-patch motif of the ribosome biogenesis factor NKRF. The G-patch motif binds in an extended conformation across the helicase surface. It tethers the catalytic core to the flexibly attached C-terminal domains, thereby fixing a conformation that is compatible with RNA binding. Structures in the presence or absence of adenosine diphosphate (ADP) suggest that motions of the catalytic core, which are required for ATP binding, are still permitted. Concomitantly, RNA affinity, helicase, and ATPase activity of DHX15 are increased when G-patch is bound. Mutations that detach one end of the tether but maintain overall binding severely impair this enhancement. Collectively, our data suggest that the G-patch motif acts like a flexible brace between dynamic portions of DHX15 that restricts excessive domain motions but maintains sufficient flexibility for catalysis.


2006 ◽  
Vol 401 (2) ◽  
pp. 581-586 ◽  
Author(s):  
Fiona L. L. Stratford ◽  
Mohabir Ramjeesingh ◽  
Joanne C. Cheung ◽  
Ling-JUN Huan ◽  
Christine E. Bear

CFTR (cystic fibrosis transmembrane conductance regulator), a member of the ABC (ATP-binding cassette) superfamily of membrane proteins, possesses two NBDs (nucleotide-binding domains) in addition to two MSDs (membrane spanning domains) and the regulatory ‘R’ domain. The two NBDs of CFTR have been modelled as a heterodimer, stabilized by ATP binding at two sites in the NBD interface. It has been suggested that ATP hydrolysis occurs at only one of these sites as the putative catalytic base is only conserved in NBD2 of CFTR (Glu1371), but not in NBD1 where the corresponding residue is a serine, Ser573. Previously, we showed that fragments of CFTR corresponding to NBD1 and NBD2 can be purified and co-reconstituted to form a heterodimer capable of ATPase activity. In the present study, we show that the two NBD fragments form a complex in vivo, supporting the utility of this model system to evaluate the role of Glu1371 in ATP binding and hydrolysis. The present studies revealed that a mutant NBD2 (E1371Q) retains wild-type nucleotide binding affinity of NBD2. On the other hand, this substitution abolished the ATPase activity formed by the co-purified complex. Interestingly, introduction of a glutamate residue in place of the non-conserved Ser573 in NBD1 did not confer additional ATPase activity by the heterodimer, implicating a vital role for multiple residues in formation of the catalytic site. These findings provide the first biochemical evidence suggesting that the Walker B residue: Glu1371, plays a primary role in the ATPase activity conferred by the NBD1–NBD2 heterodimer.


2013 ◽  
Vol 288 (29) ◽  
pp. 20785-20796 ◽  
Author(s):  
Rebecca S. Cooper ◽  
Guillermo A. Altenberg

In ATP-binding cassette proteins, the two nucleotide-binding domains (NBDs) work as dimers to bind and hydrolyze ATP, but the molecular mechanism of nucleotide hydrolysis is controversial. It is still unresolved whether hydrolysis leads to dissociation of the ATP-induced dimers or partial opening of the dimers such that the NBDs remain in contact during the hydrolysis cycle. We studied the bacterial lipid flippase MsbA by luminescence resonance energy transfer (LRET). The LRET signal between optical probes reacted with single-cysteine mutants was employed to follow NBD association/dissociation in real time. The intermonomer distances calculated from LRET data indicate that the NBDs separate completely following ATP hydrolysis, even in the presence of mm MgATP, and that the dissociation occurs following each hydrolysis cycle. The results support association/dissociation, as opposed to constant contact models, for the mode of operation of ATP-binding cassette proteins.


2010 ◽  
Vol 21 (6) ◽  
pp. 871-884 ◽  
Author(s):  
Atanas V. Koulov ◽  
Paul LaPointe ◽  
Bingwen Lu ◽  
Abbas Razvi ◽  
Judith Coppinger ◽  
...  

The activator of Hsp90 ATPase 1, Aha1, has been shown to participate in the Hsp90 chaperone cycle by stimulating the low intrinsic ATPase activity of Hsp90. To elucidate the structural basis for ATPase stimulation of human Hsp90 by human Aha1, we have developed novel mass spectrometry approaches that demonstrate that the N- and C-terminal domains of Aha1 cooperatively bind across the dimer interface of Hsp90 to modulate the ATP hydrolysis cycle and client activity in vivo. Mutations in both the N- and C-terminal domains of Aha1 impair its ability to bind Hsp90 and stimulate its ATPase activity in vitro and impair in vivo the ability of the Hsp90 system to modulate the folding and trafficking of wild-type and variant (ΔF508) cystic fibrosis transmembrane conductance regulator (CFTR) responsible for the inherited disease cystic fibrosis (CF). We now propose a general model for the role of Aha1 in the Hsp90 ATPase cycle in proteostasis whereby Aha1 regulates the dwell time of Hsp90 with client. We suggest that Aha1 activity integrates chaperone function with client folding energetics by modulating ATPase sensitive N-terminal dimer structural transitions, thereby protecting transient folding intermediates in vivo that could contribute to protein misfolding systems disorders such as CF when destabilized.


2012 ◽  
Vol 139 (5) ◽  
pp. 359-370 ◽  
Author(s):  
Kang-Yang Jih ◽  
Yoshiro Sohma ◽  
Min Li ◽  
Tzyh-Chang Hwang

Adenosine triphosphate (ATP)-binding cassette (ABC) transporters, ubiquitous proteins found in all kingdoms of life, catalyze substrates translocation across biological membranes using the free energy of ATP hydrolysis. Cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of this superfamily in that it functions as an ATP-gated chloride channel. Despite difference in function, recent studies suggest that the CFTR chloride channel and the exporter members of the ABC protein family may share an evolutionary origin. Although ABC exporters harness the free energy of ATP hydrolysis to fuel a transport cycle, for CFTR, ATP-induced dimerization of its nucleotide-binding domains (NBDs) and subsequent hydrolysis-triggered dimer separation are proposed to be coupled, respectively, to the opening and closing of the gate in its transmembrane domains. In this study, by using nonhydrolyzable ATP analogues, such as pyrophosphate or adenylyl-imidodiphosphate as baits, we captured a short-lived state (state X), which distinguishes itself from the previously identified long-lived C2 closed state by its fast response to these nonhydrolyzable ligands. As state X is caught during the decay phase of channel closing upon washout of the ligand ATP but before the channel sojourns to the C2 closed state, it likely emerges after the bound ATP in the catalysis-competent site has been hydrolyzed and the hydrolytic products have been released. Thus, this newly identified post-hydrolytic state may share a similar conformation of NBDs as the C2 closed state (i.e., a partially separated NBD and a vacated ATP-binding pocket). The significance of this novel state in understanding the structural basis of CFTR gating is discussed.


2019 ◽  
Vol 88 (1) ◽  
pp. 113-126 ◽  
Author(s):  
Bárbara Abreu ◽  
Emanuel F. Lopes ◽  
A. S. F. Oliveira ◽  
Cláudio M. Soares

Sign in / Sign up

Export Citation Format

Share Document