rapid hydrolysis
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 26)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Vol 46 (71) ◽  
pp. 35311-35318
Author(s):  
Yu Ma ◽  
Feng-Ge Wang ◽  
Ruo-Yao Fan ◽  
Hui-Ying Wang ◽  
Wen-Li Yu ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Seth J. Parker ◽  
Joel Encarnación-Rosado ◽  
Kate E. R. Hollinshead ◽  
David M. Hollinshead ◽  
Leonard J. Ash ◽  
...  

Abstractα-ketoglutarate (KG), also referred to as 2-oxoglutarate, is a key intermediate of cellular metabolism with pleiotropic functions. Cell-permeable esterified analogs are widely used to study how KG fuels bioenergetic and amino acid metabolism and DNA, RNA, and protein hydroxylation reactions, as cellular membranes are thought to be impermeable to KG. Here we show that esterified KG analogs rapidly hydrolyze in aqueous media, yielding KG that, in contrast to prevailing assumptions, imports into many cell lines. Esterified KG analogs exhibit spurious KG-independent effects on cellular metabolism, including extracellular acidification, arising from rapid hydrolysis and de-protonation of α-ketoesters, and significant analog-specific inhibitory effects on glycolysis or mitochondrial respiration. We observe that imported KG decarboxylates to succinate in the cytosol and contributes minimally to mitochondrial metabolism in many cell lines cultured in normal conditions. These findings demonstrate that nuclear and cytosolic KG-dependent reactions may derive KG from functionally distinct subcellular pools and sources.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Shannon M. Hoffman ◽  
Maria Alvarez ◽  
Gilad Alfassi ◽  
Dmitry M. Rein ◽  
Sergio Garcia-Echauri ◽  
...  

Abstract Background Future expansion of corn-derived ethanol raises concerns of sustainability and competition with the food industry. Therefore, cellulosic biofuels derived from agricultural waste and dedicated energy crops are necessary. To date, slow and incomplete saccharification as well as high enzyme costs have hindered the economic viability of cellulosic biofuels, and while approaches like simultaneous saccharification and fermentation (SSF) and the use of thermotolerant microorganisms can enhance production, further improvements are needed. Cellulosic emulsions have been shown to enhance saccharification by increasing enzyme contact with cellulose fibers. In this study, we use these emulsions to develop an emulsified SSF (eSSF) process for rapid and efficient cellulosic biofuel production and make a direct three-way comparison of ethanol production between S. cerevisiae, O. polymorpha, and K. marxianus in glucose and cellulosic media at different temperatures. Results In this work, we show that cellulosic emulsions hydrolyze rapidly at temperatures tolerable to yeast, reaching up to 40-fold higher conversion in the first hour compared to microcrystalline cellulose (MCC). To evaluate suitable conditions for the eSSF process, we explored the upper temperature limits for the thermotolerant yeasts Kluyveromyces marxianus and Ogataea polymorpha, as well as Saccharomyces cerevisiae, and observed robust fermentation at up to 46, 50, and 42 °C for each yeast, respectively. We show that the eSSF process reaches high ethanol titers in short processing times, and produces close to theoretical yields at temperatures as low as 30 °C. Finally, we demonstrate the transferability of the eSSF technology to other products by producing the advanced biofuel isobutanol in a light-controlled eSSF using optogenetic regulators, resulting in up to fourfold higher titers relative to MCC SSF. Conclusions The eSSF process addresses the main challenges of cellulosic biofuel production by increasing saccharification rate at temperatures tolerable to yeast. The rapid hydrolysis of these emulsions at low temperatures permits fermentation using non-thermotolerant yeasts, short processing times, low enzyme loads, and makes it possible to extend the process to chemicals other than ethanol, such as isobutanol. This transferability establishes the eSSF process as a platform for the sustainable production of biofuels and chemicals as a whole.


2021 ◽  
Vol 22 (11) ◽  
pp. 5599
Author(s):  
Evgenii Skurikhin ◽  
Pavel Madonov ◽  
Olga Pershina ◽  
Natalia Ermakova ◽  
Angelina Pakhomova ◽  
...  

Concentration of hyaluronic acid (HA) in the lungs increases in idiopathic pulmonary fibrosis (IPF). HA is involved in the organization of fibrin, fibronectin, and collagen. HA has been proposed to be a biomarker of fibrosis and a potential target for antifibrotic therapy. Hyaluronidase (HD) breaks down HA into fragments, but is a subject of rapid hydrolysis. A conjugate of poloxamer hyaluronidase (pHD) was prepared using protein immobilization with ionizing radiation. In a model of bleomycin-induced pulmonary fibrosis, pHD decreased the level of tissue IL-1β and TGF-β, prevented the infiltration of the lung parenchyma by CD16+ cells, and reduced perivascular and peribronchial inflammation. Simultaneously, a decrease in the concentrations of HA, hydroxyproline, collagen 1, total soluble collagen, and the area of connective tissue in the lungs was observed. The effects of pHD were significantly stronger compared to native HD which can be attributed to the higher stability of pHD. Additional spiperone administration increased the anti-inflammatory and antifibrotic effects of pHD and accelerated the regeneration of the damaged lung. The potentiating effects of spiperone can be explained by the disruption of the dopamine-induced mobilization and migration of fibroblast progenitor cells into the lungs and differentiation of lung mesenchymal stem cells (MSC) into cells of stromal lines. Thus, a combination of pHD and spiperone may represent a promising approach for the treatment of IPF and lung regeneration.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Qing Shen ◽  
Zhichao Zhang ◽  
Shiva Emami ◽  
Jianchu Chen ◽  
Juliana Maria Leite Nobrega de Moura Bell ◽  
...  

AbstractIn oil, free fatty acids (FFAs) are thought compared the efficiency of hydrolysis wto be the preferred substrate for lipid oxidation although triacylglycerols (TAGs) are the predominant lipid class. We determined the preferential oxidation substrate (TAGs versus FFAs) in soybean oil heated at 100 °C for 24 h, after validating a method for quantifying esterified and free lipid oxidation products (i.e., oxylipins) with mass-spectrometry. Reaction velocities and turnover (velocity per unit substrate) of FFA, and free and TAG-bound (esterified) oxylipins were determined. FFA hydrolysis rate and turnover were orders of magnitude greater (16-4217 fold) than that of esterified and free oxylipin formation. The velocity and turnover of TAG-bound oxylipins was significantly greater than free oxylipins by 282- and 3-fold, respectively. The results suggest that during heating, TAGs are preferentially oxidized over FFAs, despite the rapid hydrolysis and availability of individual FFAs as substrates for oxidation. TAG-bound oxylipins may serve as better markers of lipid oxidation.


Author(s):  
Aykut Kul ◽  
Olcay Sagirli

Abstract Cannabis is still the most widely used illegal plant in the world. However, cannabis use is prohibited in many countries. After cannabis use, Δ9-tetrahydrocannabinol is metabolized in the liver to 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH) and most undergo glucuronidation. THC-COOH and THC-COOH glucuronide are excreted in the urine. The total concentration of THC-COOH in the urine sample is measured to determine cannabis use. The total concentration is determined after enzymatic or alkaline hydrolysis. In this study, comparing enzymatic hydrolysis efficiency is presented comprehensively together with the method developed for the determination of total THC-COOH in the urine. Also, the method was validated according to the European Medicines Agency Guidelines on bioanalytical method validation. The method has rapid hydrolysis time (20 min), rapid analysis time (5 min) and simple sample preparation. The lower limit of quantitation of the developed method was 1 ng/mL for THC-COOH. The calibration curve of THC-COOH was between 1 and 2,000 ng/mL with a correlation coefficient >0.99. Also, the method was applied to real patient’s urine. We think that the results will provide a new perspective on enzymatic hydrolysis optimization studies.


Nutrients ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 254
Author(s):  
Jayeong Hwang ◽  
Kumju Youn ◽  
Gyutae Lim ◽  
Jinhyuk Lee ◽  
Dong Hyun Kim ◽  
...  

Alzheimer’s disease (AD) is a neurodegenerative disease conceptualized as a clinical-biological neurodegenerative construct where amyloid-beta pathophysiology is supposed to play a role. The loss of cognitive functions is mostly characterized by the rapid hydrolysis of acetylcholine by cholinesterases including acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Moreover, both enzymes are responsible for non-catalytic actions such as interacting with amyloid β peptide (Aβ) which further leads to promote senile plaque formation. In searching for a natural cholinesterase inhibitor, the present study focused on two isocoumarines from hydrangea, thunberginol C (TC) and hydrangenol 8-O-glucoside pentaacetate (HGP). Hydrangea-derived compounds were demonstrated to act as dual inhibitors of both AChE and BChE. Furthermore, the compounds exerted selective and non-competitive mode of inhibition via hydrophobic interaction with peripheral anionic site (PAS) of the enzymes. Overall results demonstrated that these natural hydrangea-derived compounds acted as selective dual inhibitors of AChE and BChE, which provides the possibility of potential source of new type of anti-cholinesterases with non-competitive binding property with PAS.


Sign in / Sign up

Export Citation Format

Share Document