scholarly journals Characterization of intact proviruses in blood and lymph node from HIV-infected individuals undergoing analytical treatment interruption

2018 ◽  
Author(s):  
Line K. Vibholm ◽  
Julio C.C. Lorenzi ◽  
Joy A. Pai ◽  
Yehuda Z. Cohen ◽  
Thiago Y. Oliveira ◽  
...  

AbstractThe role of lymphoid tissue as a potential source of HIV-1 rebound following interruption of antiretroviral therapy is uncertain. To address this issue, we compared the latent viruses obtained from CD4+ T cells in peripheral blood and lymph nodes to viruses emerging during treatment interruption. Latent viruses were characterized by sequencing near full-length (NFL) proviral DNA, and env from viral outgrowth cultures (VOAs). 5 HIV-1 infected individuals on antiretroviral therapy (ART) were studied, 4 of whom participated in a clinical trial that included an analytical treatment interruption. Intact or replication competent clonal sequences from blood and lymph node overlapped. In contrast, there was no overlap between 205 latent reservoir and 125 rebound sequences in the 4 individuals who underwent treatment interruption. However, rebound viruses could be accounted for by recombination. The data suggests that CD4+ T cells carrying latent viruses circulate between blood and lymphoid tissues in individuals on ART and support the idea that recombination may play a role in the emergence of rebound viremia.

2019 ◽  
Vol 93 (8) ◽  
Author(s):  
Line K. Vibholm ◽  
Julio C. C. Lorenzi ◽  
Joy A. Pai ◽  
Yehuda Z. Cohen ◽  
Thiago Y. Oliveira ◽  
...  

ABSTRACT The role of lymphoid tissue as a potential source of HIV-1 rebound following interruption of antiretroviral therapy (ART) is uncertain. To address this issue, we compared the latent viruses obtained from CD4+ T cells in peripheral blood and lymph nodes to viruses emerging during treatment interruption. Latent viruses were characterized by sequencing near-full-length (NFL) proviral DNA and env from viral outgrowth assays (VOAs). Five HIV-1-infected individuals on ART were studied, four of whom participated in a clinical trial of a TLR9 agonist that included an analytical treatment interruption. We found that 98% of intact or replication-competent clonal sequences overlapped between blood and lymph node. In contrast, there was no overlap between 205 latent reservoir and 125 rebound sequences in the four individuals who underwent treatment interruption. However, rebound viruses could be accounted for by recombination. The data suggest that CD4+ T cells carrying latent viruses circulate between blood and lymphoid tissues in individuals on ART and support the idea that recombination may play a role in the emergence of rebound viremia. IMPORTANCE HIV-1 persists as a latent infection in CD4+ T cells that can be found in lymphoid tissues in infected individuals during ART. However, the importance of this tissue reservoir and its contribution to viral rebound upon ART interruption are not clear. In this study, we sought to compare latent HIV-1 from blood and lymph node CD4+ T cells from five HIV-1-infected individuals. Further, we analyzed the contribution of lymph node viruses to viral rebound. We observed that the frequencies of intact proviruses were the same in blood and lymph node. Moreover, expanded clones of T cells bearing identical proviruses were found in blood and lymph node. These latent reservoir sequences did not appear to be the direct origin of rebound virus. Instead, latent proviruses were found to contribute to the rebound compartment by recombination.


2018 ◽  
Author(s):  
Yehuda Z. Cohen ◽  
Julio C. C. Lorenzi ◽  
Lisa Krassnig ◽  
John P. Barton ◽  
Leah Burke ◽  
...  

AbstractA clinical trial was performed to evaluate 3BNC117, a potent anti_HIV_1 antibody, in infected individuals during suppressive antiretroviral therapy (ART) and subsequent analytical treatment interruption (ATI). The circulating reservoir was evaluated by quantitative and qualitative outgrowth assay (Q2VOA) at entry and after 6 months, prior to ATI. Although there were no significant quantitative changes in the size of the reservoir, the composition of circulating reservoir clones varied over the 6_month period before treatment interruption in a manner that did not correlate with antibody sensitivity. The neutralization profile obtained from the reservoir by Q2VOA was predictive of time to rebound after ATI, and thus of antibody efficacy. Although 3BNC117 binding site amino acid variants found in rebound viruses pre_existed in the latent reservoir, only 3 of 217 rebound viruses were identical to 868 latent viruses. Instead many of the rebound viruses appeared to be recombinants, even in individuals with resistant reservoir viruses. By incorporating the possibility of recombination, 63% of the rebound viruses could have derived from the observed latent reservoir. In conclusion, viruses emerging during ATI in individuals treated with 3BNC117 are not the dominant species found in the circulating reservoir, but instead appear to represent recombinants.SummaryIn the setting of a clinical trial evaluating the anti_HIV_1 antibody 3BNC117, Cohen et al. demonstrate that rebound viruses that emerge following interruption of antiretroviral therapy are distinct from circulating latent viruses. However, rebound viruses often appear to be recombinants between isolated latent viruses.


2018 ◽  
Vol 115 (48) ◽  
pp. E11341-E11348 ◽  
Author(s):  
Ching-Lan Lu ◽  
Joy A. Pai ◽  
Lilian Nogueira ◽  
Pilar Mendoza ◽  
Henning Gruell ◽  
...  

Combination antiretroviral therapy controls but does not cure HIV-1 infection because a small fraction of cells harbor latent viruses that can produce rebound viremia when therapy is interrupted. The circulating latent virus reservoir has been documented by a variety of methods, most prominently by viral outgrowth assays (VOAs) in which CD4+ T cells are activated to produce virus in vitro, or more recently by amplifying proviral near full-length (NFL) sequences from DNA. Analysis of samples obtained in clinical studies in which individuals underwent analytical treatment interruption (ATI), showed little if any overlap between circulating latent viruses obtained from outgrowth cultures and rebound viruses from plasma. To determine whether intact proviruses amplified from DNA are more closely related to rebound viruses than those obtained from VOAs, we assayed 12 individuals who underwent ATI after infusion of a combination of two monoclonal anti–HIV-1 antibodies. A total of 435 intact proviruses obtained by NFL sequencing were compared with 650 latent viruses from VOAs and 246 plasma rebound viruses. Although, intact NFL and outgrowth culture sequences showed similar levels of stability and diversity with 39% overlap, the size of the reservoir estimated from NFL sequencing was larger than and did not correlate with VOAs. Finally, intact proviruses documented by NFL sequencing showed no sequence overlap with rebound viruses; however, they appear to contribute to recombinant viruses found in plasma during rebound.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Celina M. Abreu ◽  
Rebecca T. Veenhuis ◽  
Claudia R. Avalos ◽  
Shelby Graham ◽  
Daymond R. Parrilla ◽  
...  

ABSTRACT Human immunodeficiency virus (HIV) eradication or long-term suppression in the absence of antiretroviral therapy (ART) requires an understanding of all viral reservoirs that could contribute to viral rebound after ART interruption. CD4 T cells (CD4s) are recognized as the predominant reservoir in HIV type 1 (HIV-1)-infected individuals. However, macrophages are also infected by HIV-1 and simian immunodeficiency virus (SIV) during acute infection and may persist throughout ART, contributing to the size of the latent reservoir. We sought to determine whether tissue macrophages contribute to the SIVmac251 reservoir in suppressed macaques. Using cell-specific quantitative viral outgrowth assays (CD4-QVOA and MΦ-QVOA), we measured functional latent reservoirs in CD4s and macrophages in ART-suppressed SIVmac251-infected macaques. Spleen, lung, and brain in all suppressed animals contained latently infected macrophages, undetectable or low-level SIV RNA, and detectable SIV DNA. Silent viral genomes with potential for reactivation and viral spread were also identified in blood monocytes, although these cells might not be considered reservoirs due to their short life span. Additionally, virus produced in the MΦ-QVOA was capable of infecting healthy activated CD4s. Our results strongly suggest that functional latent reservoirs in CD4s and macrophages can contribute to viral rebound and reestablishment of productive infection after ART interruption. These findings should be considered in the design and implementation of future HIV cure strategies. IMPORTANCE This study provides further evidence that the latent reservoir is comprised of both CD4+ T cells and myeloid cells. The data presented here suggest that CD4+ T cells and macrophages found throughout tissues in the body can contain replication-competent SIV and contribute to rebound of the virus after treatment interruption. Additionally, we have shown that monocytes in blood contain latent virus and, though not considered a reservoir themselves due to their short life span, could contribute to the size of the latent reservoir upon entering the tissue and differentiating into long-lived macrophages. These new insights into the size and location of the SIV reservoir using a model that is heavily studied in the HIV field could have great implications for HIV-infected individuals and should be taken into consideration with the development of future HIV cure strategies.


2021 ◽  
Vol 1 ◽  
Author(s):  
Kathrine Kjær ◽  
Steffen Leth ◽  
Christina V. Konrad ◽  
Jesper D. Gunst ◽  
Rasmus Nymann ◽  
...  

A cure for human immunodeficiency virus (HIV-1) is restricted by the continued presence of a latent reservoir of memory CD4+ T cells with proviruses integrated into their DNA despite suppressive antiretroviral therapy (ART). A predominant strategy currently pursued in HIV-1 cure-related research is the “kick and kill” approach, where latency reversal agents (LRAs) are used to reactivate transcription from integrated proviruses. The premise of this approach is that “kicking” latent virus out of hiding allows the host immune system to recognize and kill infected cells. Clinical trials investigating the efficacy of LRAs, such as romidepsin, have shown that these interventions do induce transient spikes in viral RNA in HIV-1-infected individuals. However, since these trials failed to significantly reduce viral reservoir size or significantly delay time to viral rebound during analytical treatment interruptions, it is questioned how much each individual latent provirus is actually “kicked” to produce viral transcripts and/or proteins by the LRA. Here, we developed sensitive and specific digital droplet PCR-based assays with single-provirus level resolution. Combining these assays allowed us to interrogate the level of viral RNA transcripts from single proviruses in individuals on suppressive ART with or without concomitant romidepsin treatment. Small numbers of proviruses in peripheral blood memory CD4+ T cells were triggered to become marginally transcriptionally active upon romidepsin treatment. These novel assays can be applied retrospectively and prospectively in HIV-1 cure-related clinical trials to gain crucial insights into LRA efficacy at the single provirus level.


2019 ◽  
Vol 94 (3) ◽  
Author(s):  
Eunok Lee ◽  
Susanne von Stockenstrom ◽  
Vincent Morcilla ◽  
Lina Odevall ◽  
Bonnie Hiener ◽  
...  

ABSTRACT Understanding the impact of antiretroviral therapy (ART) duration on HIV-infected cells is critical for developing successful curative strategies. To address this issue, we conducted a cross-sectional/inter-participant genetic characterization of HIV-1 RNA from pre- and on-therapy plasmas and HIV-1 DNA from CD4+ T cell subsets derived from peripheral blood (PB), lymph node (LN), and gut tissues of 26 participants after 3 to 17.8 years of ART. Our studies revealed in four acute/early participants who had paired PB and LN samples a substantial reduction in the proportion of HIV-infected cells per year on therapy within the LN. Extrapolation to all 12 acute/early participants estimated a much smaller reduction in the proportion of HIV-1-infected cells within LNs per year on therapy that was similar to that in the participants treated during chronic infection. LN-derived effector memory T (TEM) cells contained HIV-1 DNA that was genetically identical to viral sequences derived from pre- and on-therapy plasma samples. The proportion of identical HIV-1 DNA sequences increased within PB-derived TEM cells. However, the infection frequency of TEM cells in PB was stable, indicating that cellular proliferation that compensates for T cell loss over time contributes to HIV-1 persistence. This study suggests that ART reduces HIV-infected T cells and that clonal expansion of HIV-infected cells maintains viral persistence. Importantly, LN-derived TEM cells are a probable source of HIV-1 genomes capable of producing infectious HIV-1 and should be targeted by future curative strategies. IMPORTANCE HIV-1 persists as an integrated genome in CD4+ memory T cells during effective therapy, and cessation of current treatments results in resumption of viral replication. To date, the impact of antiretroviral therapy duration on HIV-infected CD4+ T cells and the mechanisms of viral persistence in different anatomic sites is not clearly elucidated. In the current study, we found that treatment duration was associated with a reduction in HIV-infected T cells. Our genetic analyses revealed that CD4+ effector memory T (TEM) cells derived from the lymph node appeared to contain provirus that was genetically identical to plasma-derived virions. Moreover, we found that cellular proliferation counterbalanced the decay of HIV-infected cells throughout therapy. The contribution of cellular proliferation to viral persistence is particularly significant in TEM cells. Our study emphasizes the importance of HIV-1 intervention and provides new insights into the location of memory T cells infected with HIV-1 DNA, which is capable of contributing to viremia.


2017 ◽  
Vol 91 (15) ◽  
Author(s):  
Wen Shi Lee ◽  
Anne B. Kristensen ◽  
Thomas A. Rasmussen ◽  
Martin Tolstrup ◽  
Lars Østergaard ◽  
...  

ABSTRACT There is growing interest in utilizing antibody-dependent cellular cytotoxicity (ADCC) to eliminate infected cells following reactivation from HIV-1 latency. A potential barrier is that HIV-1-specific ADCC antibodies decline in patients on long-term antiretroviral therapy (ART) and may not be sufficient to eliminate reactivated latently infected cells. It is not known whether reactivation from latency with latency-reversing agents (LRAs) could provide sufficient antigenic stimulus to boost HIV-1-specific ADCC. We found that treatment with the LRA panobinostat or a short analytical treatment interruption (ATI), 21 to 59 days, was not sufficient to stimulate an increase in ADCC-competent antibodies, despite viral rebound in all subjects who underwent the short ATI. In contrast, a longer ATI, 2 to 12 months, among subjects enrolled in the Strategies for Management of Antiretroviral Therapy (SMART) trial robustly boosted HIV-1 gp120-specific Fc receptor-binding antibodies and ADCC against HIV-1-infected cells in vitro. These results show that there is a lag between viral recrudescence and the boosting of ADCC antibodies, which has implications for strategies toward eliminating latently infected cells. IMPORTANCE The “shock and kill” HIV-1 cure strategy aims to reactivate HIV-1 expression in latently infected cells and subsequently eliminate the reactivated cells through immune-mediated killing. Several latency reversing agents (LRAs) have been examined in vivo, but LRAs alone have not been able to achieve HIV-1 remission and prevent viral rebound following analytical treatment interruption (ATI). In this study, we examined whether LRA treatment or ATI can provide sufficient antigenic stimulus to boost HIV-1-specific functional antibodies that can eliminate HIV-1-infected cells. Our study has implications for the antigenic stimulus required for antilatency strategies and/or therapeutic vaccines to boost functional antibodies and assist in eliminating the latent reservoir.


2021 ◽  
Vol 13 (576) ◽  
pp. eabd8179
Author(s):  
Marcos V. P. Gondim ◽  
Scott Sherrill-Mix ◽  
Frederic Bibollet-Ruche ◽  
Ronnie M. Russell ◽  
Stephanie Trimboli ◽  
...  

Type 1 interferons (IFN-I) are potent innate antiviral effectors that constrain HIV-1 transmission. However, harnessing these cytokines for HIV-1 cure strategies has been hampered by an incomplete understanding of their antiviral activities at later stages of infection. Here, we characterized the IFN-I sensitivity of 500 clonally derived HIV-1 isolates from the plasma and CD4+ T cells of 26 individuals sampled longitudinally after transmission or after antiretroviral therapy (ART) and analytical treatment interruption. We determined the concentration of IFNα2 and IFNβ that reduced viral replication in vitro by 50% (IC50) and found consistent changes in the sensitivity of HIV-1 to IFN-I inhibition both across individuals and over time. Resistance of HIV-1 isolates to IFN-I was uniformly high during acute infection, decreased in all individuals in the first year after infection, was reacquired concomitant with CD4+ T cell loss, and remained elevated in individuals with accelerated disease. HIV-1 isolates obtained by viral outgrowth during suppressive ART were relatively IFN-I sensitive, resembling viruses circulating just before ART initiation. However, viruses that rebounded after treatment interruption displayed the highest degree of IFNα2 and IFNβ resistance observed at any time during the infection course. These findings indicate a dynamic interplay between host innate responses and the evolving HIV-1 quasispecies, with the relative contribution of IFN-I to HIV-1 control affected by both ART and analytical treatment interruption. Although elevated at transmission, host innate pressures are the highest during viral rebound, limiting the viruses that successfully become reactivated from latency to those that are IFN-I resistant.


2020 ◽  
Author(s):  
Christiaan H. van Dorp ◽  
Jessica M. Conway ◽  
James B. Whitney ◽  
Dan H. Barouch ◽  
Alan S. Perelson

AbstractIn order to assess the efficacy of novel HIV-1 treatments leading to a functional cure, the time to viral rebound is frequently used as a surrogate endpoint. The longer the time to viral rebound, the more efficacious the therapy. In support of such an approach, mathematical models serve as a connection between the size of the latent reservoir and the time to HIV-1 rebound after treatment interruption. The simplest of such models assumes that a single successful latent cell reactivation event leads to observable viremia after a period of exponential viral growth. Here we consider a generalization developed by Pinkevych et al. and Hill et al. of this simple model in which multiple reactivation events can occur, each contributing to the exponential growth of the viral load. We formalize and improve the previous derivation of the dynamics predicted by this model, and use the model to estimate relevant biological parameters from SIV rebound data. We confirm a previously described effect of very early antiretroviral therapy (ART) initiation on the rate of recrudescence and the viral load growth rate after treatment interruption. We find that every day ART initiation is delayed results in a 39% increase in the recrudescence rate, and a 11% decrease of the viral growth rate. We show that when viral rebound occurs early relative to the viral load doubling time, a model with multiple successful reactivation events fits the data better than a model with only a single successful reactivation event.Author SummaryHIV-1 persists during suppressive antiretroviral therapy (ART) due to a reservoir of latently infected cells. When ART is stopped, HIV generally rebounds within a few weeks. However, there is a small fraction of patients that do not rebound over a period of months or years. A variety of treatments are being tested for their ability to reduce the size of the latent reservoir, to induce effective immune responses against the virus, or to prevent or prolong the time to viral rebound after ART interruption. These novel treatments are typically first tested in SIV infected macaques, and the efficacy of the treatment assessed by interrupting ART and measuring the time to viral rebound. Here, we develop and test a mathematical and statistical model that describes the process of viral rebound. The model can be used for statistical inference of the efficacy of newly developed treatments. Importantly, the model takes into account that multiple recrudescence events can precede rebound. We test the model using data from early treated SIV infected macaques.


2017 ◽  
Author(s):  
Daniel I. S. Rosenbloom ◽  
Alison L. Hill ◽  
Sarah B. Laskey ◽  
Robert F. Siliciano

Despite antiretroviral therapy (ART), a latent reservoir of replication-competent HIV-1 persists in resting memory CD4+ T-cells and precludes cure1-6. Lorenzo-Redondo et al.7 analyzed HIV-1 sequences collected from three individuals during the first six months of ART, discovered specific patterns of sequence evolution, and concluded that viral replication persists during therapy. We believe these evolutionary patterns are artifacts of rapidly decaying viral subpopulations present during the first months of therapy and are not characteristic of the long-lived reservoir. The study therefore provides no evidence that ongoing replication is an additional barrier to cure for treated individuals who consistently maintain low viral loads.


Sign in / Sign up

Export Citation Format

Share Document