scholarly journals Functional characterization of Arabidopsis ARGONAUTE 3 in reproductive tissue

2018 ◽  
Author(s):  
Pauline E. Jullien ◽  
Stefan Grob ◽  
Antonin Marchais ◽  
Nathan Pumplin ◽  
Clement Chevalier ◽  
...  

SUMMARYArabidopsis encodes ten ARGONAUTE (AGO) effectors of RNA silencing, canonically loaded with either 21-22nt small RNAs (sRNA) to mediate post-transcriptional-gene-silencing (PTGS) or 24nt sRNAs to promote RNA-directed-DNA-methylation. Using full-locus constructs, we characterized the expression, biochemical properties, and possible modes of action of AGO3. Although AGO3 arose from a recent duplication at the AGO2 locus, their expression differs drastically, with AGO2 being expressed in both male and female gametes whereas AGO3 accumulates in aerial vascular terminations and specifically in chalazal seed integuments. Accordingly, AGO3 down-regulation alters gene expression in siliques. Similar to AGO2, AGO3 binds sRNAs with a strong 5’-adenosine bias, but unlike most Arabidopsis AGOs - AGO2 included - it binds efficiently both 24nt and 21nt sRNAs. AGO3 immunoprecipitation experiments in siliques revealed that these sRNAs mostly correspond to genes and intergenic regions. in a manner reflecting their respective accumulation from their loci-of-origin. AGO3 localizes to the cytoplasm and co-fractionates with polysomes to possibly mediate PTGS via translation inhibition.Significance statementThe regulation of gene expression by small RNAs is key for proper plant development and defense. Here, we characterize Arabidopsis AGO3 expression pattern, microRNA regulation and biochemical properties during sexual reproduction.

Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 524
Author(s):  
Bingqi Wu ◽  
Zhiting Chen ◽  
Xiaohui Xu ◽  
Ronghua Chen ◽  
Siwei Wang ◽  
...  

Functional characterization of plant agrichemical transporters provided an opportunity to discover molecules that have a high mobility in plants and have the potential to increase the amount of pesticides reaching damage sites. Agrobacterium-mediated transient expression in tobacco is simple and fast, and its protein expression efficiency is high; this system is generally used to mediate heterologous gene expression. In this article, transient expression of tobacco nicotine uptake permease (NtNUP1) and rice polyamine uptake transporter 1 (OsPUT1) in Nicotiana benthamiana was performed to investigate whether this system is useful as a platform for studying the interactions between plant transporters and pesticides. The results showed that NtNUP1 increases nicotine uptake in N. benthamiana foliar discs and protoplasts, indicating that this transient gene expression system is feasible for studying gene function. Moreover, yeast expression of OsPUT1 apparently increases methomyl uptake. Overall, this method of constructing a transient gene expression system is useful for improving the efficiency of analyzing the functions of plant heterologous transporter-encoding genes and revealed that this system can be further used to study the functions of transporters and pesticides, especially their interactions.


2021 ◽  
Author(s):  
Ganna Reshetnyak ◽  
Jonathan M. Jacobs ◽  
Florence Auguy ◽  
Coline Sciallano ◽  
Lisa Claude ◽  
...  

ABSTRACTNon-coding small RNAs (sRNA) act as mediators of gene silencing and regulate plant growth, development and stress responses. Early insights into plant sRNAs established a role in antiviral defense and they are now extensively studied across plant-microbe interactions. Here, sRNA sequencing discovered a class of sRNA in rice (Oryza sativa) specifically associated with foliar diseases caused by Xanthomonas oryzae bacteria. Xanthomonas-induced small RNAs (xisRNAs) loci were distinctively upregulated in response to diverse virulent strains at an early stage of infection producing a single duplex of 20-22nt sRNAs. xisRNAs production was dependent on the Type III secretion system, a major bacterial virulence factor for host colonization. xisRNA loci overlap with annotated transcripts sequences often encoding protein kinase domain proteins. A number of the corresponding rice cis-genes have documented functions in immune signaling and some xisRNA loci coincide with the coding sequence of a conserved kinase motif. xisRNAs exhibit features of small interfering RNAs and their biosynthesis depend on canonical components OsDCL1 and OsHEN1. xisRNA induction possibly mediates post-transcriptional gene silencing but they do not broadly suppress cis-genes expression on the basis of mRNA-seq data. Overall, our results identify a group of unusual sRNAs with a potential role in plant-microbe interactions.


2003 ◽  
Vol 23 (22) ◽  
pp. 8272-8281 ◽  
Author(s):  
Hanna Uvell ◽  
Ylva Engström

ABSTRACT Innate immune reactions are crucial processes of metazoans to protect the organism against overgrowth of faster replicating microorganisms. Drosophila melanogaster is a precious model for genetic and molecular studies of the innate immune system. In response to infection, the concerted action of a battery of antimicrobial peptides ensures efficient killing of the microbes. The induced gene expression relies on translocation of the Drosophila Rel transcription factors Relish, Dif, and Dorsal to the nucleus where they bind to κB-like motifs in the promoters of the inducible genes. We have identified another putative promoter element, called region 1 (R1), in a number of antimicrobial peptide genes. Site-directed mutagenesis of the R1 site diminished Cecropin A1 (CecA1) expression in transgenic Drosophila larvae and flies. Infection of flies induced a nuclear R1-binding activity that was unrelated to the κB-binding activity in the same extracts. Although the R1 motif was required for Rel protein-mediated CecA1 expression in cotransfection experiments, our data argue against it being a direct target for the Drosophila Rel proteins. We propose that the R1 and κB motifs are targets for distinct regulatory complexes that act in concert to promote high levels of antimicrobial peptide gene expression in response to infection.


Sign in / Sign up

Export Citation Format

Share Document