scholarly journals A smooth muscle-like niche facilitates lung epithelial regeneration

2019 ◽  
Author(s):  
Alena Moiseenko ◽  
Ana Ivonne Vazquez-Armendariz ◽  
Xuran Chu ◽  
Stefan Günther ◽  
Kevin Lebrigand ◽  
...  

AbstractThe mammalian lung is a highly complex organ due to its branched, tree-like structure and diverse cellular composition. Recent efforts using state-of-the-art genetic lineage tracing and single-cell transcriptomics have helped reduce this complexity and delineate the ancestry and fate of various cell subpopulations during organogenesis, homeostasis and repair after injury. However, mesenchymal cell heterogeneity and function in development and disease remain a longstanding issue in the lung field. In this study, we break down smooth muscle heterogeneity into the constituent subpopulations by combiningin vivolineage tracing, single-cell RNA sequencing andin vitroorganoid cultures. We identify a repair-supportive mesenchymal cell (RSMC) population that is distinct from pre-existing airway smooth muscle cells (ASMC) and is critical for regenerating the conducting airway epithelium. Progenitors of RSMCs are intertwined with airway smooth muscle, undergo active WNT signaling, transiently acquire the expression of the smooth muscle marker ACTA2 in response to epithelial injury and are marked by PDGFRα expression. Our data simplify the cellular complexity of the peribronchiolar domain of the adult lung and represent a forward step towards unraveling the role of mesenchymal cell subpopulations in instructing epithelial behavior during repair processes.

2021 ◽  
Author(s):  
Odemaris Narvaez del Pilar ◽  
Jichao Chen

The mesenchyme consists of heterogeneous cell populations that support neighboring structures and are integral to intercellular signaling. Despite such importance, mesenchymal cell types are poorly defined morphologically and molecularly, lagging behind their counterparts in the epithelial, endothelial, and immune lineages. Leveraging single-cell RNA-seq, three-dimensional imaging, and lineage tracing, we classify the mouse lung mesenchyme into three proximal-distal axes that are associated with the endothelium, epithelium, and interstitium, respectively. From proximal to distal, (1) the vascular axis includes vascular smooth muscle cells and pericytes that transition as arterioles and venules ramify into capillaries; (2) the epithelial axis includes airway smooth muscle cells and two populations of myofibroblasts: ductal myofibroblasts, surrounding alveolar ducts and marked by CDH4, HHIP, and Lgr6, which persist post-alveologenesis, and alveolar myofibroblasts, surrounding alveoli and marked by high expression of PDGFRA, which undergo developmental apoptosis; (3) the interstitial axis, residing between the epithelial and vascular trees and sharing a newly-identified marker MEOX2, includes fibroblasts in the bronchovascular bundle and the alveolar interstitium that are marked by IL33/DNER/PI16 and Wnt2, respectively. Single-cell imaging reveals distinct morphology of each mesenchymal cell population. This classification provides a conceptual and experimental framework applicable to other organs.


1999 ◽  
Vol 86 (1) ◽  
pp. 427-435 ◽  
Author(s):  
S. P. Driska ◽  
R. E. Laudadio ◽  
M. R. Wolfson ◽  
T. H. Shaffer

Methods are described for isolating smooth muscle cells from the tracheae of adult and neonatal sheep and measuring the single-cell shortening velocity. Isolated cells were elongated, Ca2+ tolerant, and contracted rapidly and substantially when exposed to cholinergic agonists, KCl, serotonin, or caffeine. Adult cells were longer and wider than preterm cells. Mean cell length in 1.6 mM CaCl2 was 194 ± 57 (SD) μm ( n = 66) for adult cells and 93 ± 32 μm ( n = 20) for preterm cells ( P < 0.05). Mean cell width at the widest point of the adult cells was 8.2 ± 1.8 μm ( n = 66) and 5.2 ± 1.5 μm ( n = 20) for preterm cells ( P < 0.05). Cells were loaded into a perfusion dish maintained at 35°C and exposed to agonists, and contractions were videotaped. Cell lengths were measured from 30 video frames and plotted as a function of time. Nonlinear fitting of cell length to an exponential model gave shortening velocities faster than most of those reported for airway smooth muscle tissues. For a sample of 10 adult and 10 preterm cells stimulated with 100 μM carbachol, mean (± SD) shortening velocity of the preterm cells was not different from that of the adult cells (0.64 ± 0.30 vs. 0.54 ± 0.27 s−1, respectively), but preterm cells shortened more than adult cells (68 ± 12 vs. 55 ± 11% of starting length, respectively; P < 0.05). The preparative and analytic methods described here are widely applicable to other smooth muscles and will allow contraction to be studied quantitatively at the single-cell level.


1989 ◽  
Vol 256 (2) ◽  
pp. C329-C335 ◽  
Author(s):  
R. A. Panettieri ◽  
R. K. Murray ◽  
L. R. DePalo ◽  
P. A. Yadvish ◽  
M. I. Kotlikoff

We report the development of a nontransformed line of human airway smooth muscle cells retaining smooth muscle-specific contractile protein expression and physiological responsiveness to agonists implicated in inflammatory airway diseases. Specific responses to histamine, leukotrienes, bradykinin, platelet-activating factor, substance P, and thromboxane analogues are demonstrated as well as functional coupling to beta-adrenergic receptors. The cell line was characterized using indirect immunofluorescence, as well as electrophoretic separation and immunoblot analysis of smooth muscle-specific actin. Functional responses were assessed by measurements of cytosolic calcium and stimulation of adenosine 3',5'-cyclic monophosphate production. The cells retain their responsiveness over many population doublings and should be a useful model to examine specific receptor-effector mechanisms, as well as the effects of neurohumoral agents on the regulation of airway smooth muscle growth and differentiation.


Sign in / Sign up

Export Citation Format

Share Document