scholarly journals Quantitative high-throughput tests of ubiquitous RNA secondary structure prediction algorithms via RNA/protein binding

2019 ◽  
Author(s):  
Winston R. Becker ◽  
Inga Jarmoskaite ◽  
Kalli Kappel ◽  
Pavanapuresan P. Vaidyanathan ◽  
Sarah K. Denny ◽  
...  

AbstractNearest-neighbor (NN) rules provide a simple and powerful quantitative framework for RNA structure prediction that is strongly supported for canonical Watson-Crick duplexes from a plethora of thermodynamic measurements. Predictions of RNA secondary structure based on nearest-neighbor (NN) rules are routinely used to understand biological function and to engineer and control new functions in biotechnology. However, NN applications to RNA structural features such as internal and terminal loops rely on approximations and assumptions, with sparse experimental coverage of the vast number of possible sequence and structural features. To test to what extent NN rules accurately predict thermodynamic stabilities across RNAs with non-WC features, we tested their predictions using a quantitative high-throughput assay platform, RNA-MaP. Using a thermodynamic assay with coupled protein binding, we carried out equilibrium measurements for over 1000 RNAs with a range of predicted secondary structure stabilities. Our results revealed substantial scatter and systematic deviations between NN predictions and observed stabilities. Solution salt effects and incorrect or omitted loop parameters contribute to these observed deviations. Our results demonstrate the need to independently and quantitatively test NN computational algorithms to identify their capabilities and limitations. RNA-MaP and related approaches can be used to test computational predictions and can be adapted to obtain experimental data to improve RNA secondary structure and other prediction algorithms.Significance statementRNA secondary structure prediction algorithms are routinely used to understand, predict and design functional RNA structures in biology and biotechnology. Given the vast number of RNA sequence and structural features, these predictions rely on a series of approximations, and independent tests are needed to quantitatively evaluate the accuracy of predicted RNA structural stabilities. Here we measure the stabilities of over 1000 RNA constructs by using a coupled protein binding assay. Our results reveal substantial deviations from the RNA stabilities predicted by popular algorithms, and identify factors contributing to the observed deviations. We demonstrate the importance of quantitative, experimental tests of computational RNA structure predictions and present an approach that can be used to routinely test and improve the prediction accuracy.

2020 ◽  
Vol 15 (2) ◽  
pp. 135-143
Author(s):  
Sha Shi ◽  
Xin-Li Zhang ◽  
Le Yang ◽  
Wei Du ◽  
Xian-Li Zhao ◽  
...  

Background: The prediction of RNA secondary structure using optimization algorithms is key to understand the real structure of an RNA. Evolutionary algorithms (EAs) are popular strategies for RNA secondary structure prediction. However, compared to most state-of-the-art software based on DPAs, the performances of EAs are a bit far from satisfactory. Objective: Therefore, a more powerful strategy is required to improve the performances of EAs when applied to the prediciton of RNA secondary structures. Methods: The idea of quantum computing is introduced here yielding a new strategy to find all possible legal paired-bases with the constraint of minimum free energy. The sate of a stem pool with size N is encoded as a population of QGA, which is represented by N quantum bits but not classical bits. The updating of populations is accomplished by so-called quantum crossover operations, quantum mutation operations and quantum rotation operations. Results: The numerical results show that the performances of traditional EAs are significantly improved by using QGA with regard to not only prediction accuracy and sensitivity but also complexity. Moreover, for RNA sequences with middle-short length, QGA even improves the state-of-art software based on DPAs in terms of both prediction accuracy and sensitivity. Conclusion: This work sheds an interesting light on the applications of quantum computing on RNA structure prediction.


2018 ◽  
Author(s):  
Osama Alaidi ◽  
Fareed Aboul-ela

ABSTRACTThe realization that non protein-coding RNA (ncRNA) is implicated in an increasing number of cellular processes, many related to human disease, makes it imperative to understand and predict RNA folding. RNA secondary structure prediction is more tractable than tertiary structure or protein structure. Yet insights into RNA structure-function relationships are complicated by coupling between RNA folding and ligand binding. Here, we introduce a simple statistical mechanical formalism to calculate perturbations to equilibrium secondary structure conformational distributions for RNA, in the presence of bound cognate ligands. For the first time, this formalism incorporates a key factor in coupling ligand binding to RNA conformation: the differential affinity of the ligand for a range of RNA-folding intermediates. We apply the approach to the SAM-I riboswitch, for which binding data is available for analogs of intermediate secondary structure conformers. Calculations of equilibrium secondary structure distributions during the transcriptional “decision window” predict subtle shifts due to the ligand, rather than an on/off switch. The results suggest how ligand perturbation can release a kinetic block to the formation of a terminator hairpin in the full-length riboswitch. Such predictions identify aspects of folding that are most affected by ligand binding, and can readily be compared with experiment.


BMC Genomics ◽  
2019 ◽  
Vol 20 (S13) ◽  
Author(s):  
Zhang Kai ◽  
Wang Yuting ◽  
Lv Yulin ◽  
Liu Jun ◽  
He Juanjuan

Abstract Background RNA pseudoknot structures play an important role in biological processes. However, existing RNA secondary structure prediction algorithms cannot predict the pseudoknot structure efficiently. Although random matching can improve the number of base pairs, these non-consecutive base pairs cannot make contributions to reduce the free energy. Result In order to improve the efficiency of searching procedure, our algorithm take consecutive base pairs as the basic components. Firstly, our algorithm calculates and archive all the consecutive base pairs in triplet data structure, if the number of consecutive base pairs is greater than given minimum stem length. Secondly, the annealing schedule is adapted to select the optimal solution that has minimum free energy. Finally, the proposed algorithm is evaluated with the real instances in PseudoBase. Conclusion The experimental results have been demonstrated to provide a competitive and oftentimes better performance when compared against some chosen state-of-the-art RNA structure prediction algorithms.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Gang Wang ◽  
Wen-yi Zhang ◽  
Qiao Ning ◽  
Hui-ling Chen

Prediction of RNA structure is a useful process for creating new drugs and understanding genetic diseases. In this paper, we proposed a particle swarm optimization (PSO) and ant colony optimization (ACO) based framework (PAF) for RNA secondary structure prediction. PAF consists of crucial stem searching (CSS) and global sequence building (GSB). In CSS, a modified ACO (MACO) is used to search the crucial stems, and then a set of stems are generated. In GSB, we used a modified PSO (MPSO) to construct all the stems in one sequence. We evaluated the performance of PAF on ten sequences, which have length from 122 to 1494. We also compared the performance of PAF with the results obtained from six existing well-known methods, SARNA-Predict, RnaPredict, ACRNA, PSOfold, IPSO, and mfold. The comparison results show that PAF could not only predict structures with higher accuracy rate but also find crucial stems.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kengo Sato ◽  
Manato Akiyama ◽  
Yasubumi Sakakibara

AbstractAccurate predictions of RNA secondary structures can help uncover the roles of functional non-coding RNAs. Although machine learning-based models have achieved high performance in terms of prediction accuracy, overfitting is a common risk for such highly parameterized models. Here we show that overfitting can be minimized when RNA folding scores learnt using a deep neural network are integrated together with Turner’s nearest-neighbor free energy parameters. Training the model with thermodynamic regularization ensures that folding scores and the calculated free energy are as close as possible. In computational experiments designed for newly discovered non-coding RNAs, our algorithm (MXfold2) achieves the most robust and accurate predictions of RNA secondary structures without sacrificing computational efficiency compared to several other algorithms. The results suggest that integrating thermodynamic information could help improve the robustness of deep learning-based predictions of RNA secondary structure.


Sign in / Sign up

Export Citation Format

Share Document