scholarly journals The complete, functional and dynamic cycle of the bacterial Initiation Factor 3

2019 ◽  
Author(s):  
Jose A. Nakamoto ◽  
Roberto Spurio ◽  
Andrey L. Konevega ◽  
Attilio Fabbretti ◽  
Pohl Milón

AbstractInitiation factor 3 (IF3) is an essential protein that enhances the fidelity and speed of bacterial initiation of mRNA translation. The dynamic interplay between the two independent IF3 domains, their alternative binding sites, and the mechanism that ensures translation initiation fidelity remains elusive. Here, we show that the functional positioning of IF3 domains occurs at velocities ranging over two orders of magnitude, driven by each 30S initiation ligand. IF1 and IF2 rapidly promote the accommodation of IF3 on the 30S platform with the C-terminal domain moving towards the P site. Reversion of this movement is triggered by decoding the mRNA start codon and rate limits translation initiation. Binding of the tRNA results in the concomitant accommodation of the N-terminal domain of IF3, largely dependent on the mRNA and initiator tRNA. 70S initiation complex formation promotes the closing and dissociation of IF3, recycling the factor for a new round of translation initiation. Altogether our results unveil the kinetic spectrum of IF3 conformations and highlight fundamental movements of the factor that ensure accurate translation initiation.

2013 ◽  
Vol 289 (3) ◽  
pp. 1704-1722 ◽  
Author(s):  
Fujun Zhou ◽  
Sarah E. Walker ◽  
Sarah F. Mitchell ◽  
Jon R. Lorsch ◽  
Alan G. Hinnebusch

eIF4B has been implicated in attachment of the 43 S preinitiation complex (PIC) to mRNAs and scanning to the start codon. We recently determined that the internal seven repeats (of ∼26 amino acids each) of Saccharomyces cerevisiae eIF4B (yeIF4B) compose the region most critically required to enhance mRNA recruitment by 43 S PICs in vitro and stimulate general translation initiation in yeast. Moreover, although the N-terminal domain (NTD) of yeIF4B contributes to these activities, the RNA recognition motif is dispensable. We have now determined that only two of the seven internal repeats are sufficient for wild-type (WT) yeIF4B function in vivo when all other domains are intact. However, three or more repeats are needed in the absence of the NTD or when the functions of eIF4F components are compromised. We corroborated these observations in the reconstituted system by demonstrating that yeIF4B variants with only one or two repeats display substantial activity in promoting mRNA recruitment by the PIC, whereas additional repeats are required at lower levels of eIF4A or when the NTD is missing. These findings indicate functional overlap among the 7-repeats and NTD domains of yeIF4B and eIF4A in mRNA recruitment. Interestingly, only three highly conserved positions in the 26-amino acid repeat are essential for function in vitro and in vivo. Finally, we identified conserved motifs in the NTD and demonstrate functional overlap of two such motifs. These results provide a comprehensive description of the critical sequence elements in yeIF4B that support eIF4F function in mRNA recruitment by the PIC.


Cell Reports ◽  
2012 ◽  
Vol 1 (6) ◽  
pp. 689-702 ◽  
Author(s):  
Rafael E. Luna ◽  
Haribabu Arthanari ◽  
Hiroyuki Hiraishi ◽  
Jagpreet Nanda ◽  
Pilar Martin-Marcos ◽  
...  

2019 ◽  
Vol 20 (18) ◽  
pp. 4464 ◽  
Author(s):  
Nikolay E. Shirokikh ◽  
Yulia S. Dutikova ◽  
Maria A. Staroverova ◽  
Ross D. Hannan ◽  
Thomas Preiss

Several control mechanisms of eukaryotic gene expression target the initiation step of mRNA translation. The canonical translation initiation pathway begins with cap-dependent attachment of the small ribosomal subunit (SSU) to the messenger ribonucleic acid (mRNA) followed by an energy-dependent, sequential ‘scanning’ of the 5′ untranslated regions (UTRs). Scanning through the 5′UTR requires the adenosine triphosphate (ATP)-dependent RNA helicase eukaryotic initiation factor (eIF) 4A and its efficiency contributes to the specific rate of protein synthesis. Thus, understanding the molecular details of the scanning mechanism remains a priority task for the field. Here, we studied the effects of inhibiting ATP-dependent translation and eIF4A in cell-free translation and reconstituted initiation reactions programmed with capped mRNAs featuring different 5′UTRs. An aptamer that blocks eIF4A in an inactive state away from mRNA inhibited translation of capped mRNA with the moderately structured β-globin sequences in the 5′UTR but not that of an mRNA with a poly(A) sequence as the 5′UTR. By contrast, the nonhydrolysable ATP analogue β,γ-imidoadenosine 5′-triphosphate (AMP-PNP) inhibited translation irrespective of the 5′UTR sequence, suggesting that complexes that contain ATP-binding proteins in their ATP-bound form can obstruct and/or actively block progression of ribosome recruitment and/or scanning on mRNA. Further, using primer extension inhibition to locate SSUs on mRNA (‘toeprinting’), we identify an SSU complex which inhibits primer extension approximately eight nucleotides upstream from the usual toeprinting stop generated by SSUs positioned over the start codon. This ‘−8 nt toeprint’ was seen with mRNA 5′UTRs of different length, sequence and structure potential. Importantly, the ‘−8 nt toeprint’ was strongly stimulated by the presence of the cap on the mRNA, as well as the presence of eIFs 4F, 4A/4B and ATP, implying active scanning. We assembled cell-free translation reactions with capped mRNA featuring an extended 5′UTR and used cycloheximide to arrest elongating ribosomes at the start codon. Impeding scanning through the 5′UTR in this system with elevated magnesium and AMP-PNP (similar to the toeprinting conditions), we visualised assemblies consisting of several SSUs together with one full ribosome by electron microscopy, suggesting direct detection of scanning intermediates. Collectively, our data provide additional biochemical, molecular and physical evidence to underpin the scanning model of translation initiation in eukaryotes.


Science ◽  
2020 ◽  
Vol 369 (6508) ◽  
pp. 1220-1227 ◽  
Author(s):  
Jailson Brito Querido ◽  
Masaaki Sokabe ◽  
Sebastian Kraatz ◽  
Yuliya Gordiyenko ◽  
J. Mark Skehel ◽  
...  

A key step in translational initiation is the recruitment of the 43S preinitiation complex by the cap-binding complex [eukaryotic initiation factor 4F (eIF4F)] at the 5′ end of messenger RNA (mRNA) to form the 48S initiation complex (i.e., the 48S). The 48S then scans along the mRNA to locate a start codon. To understand the mechanisms involved, we used cryo–electron microscopy to determine the structure of a reconstituted human 48S. The structure reveals insights into early events of translation initiation complex assembly, as well as how eIF4F interacts with subunits of eIF3 near the mRNA exit channel in the 43S. The location of eIF4F is consistent with a slotting model of mRNA recruitment and suggests that downstream mRNA is unwound at least in part by being “pulled” through the 40S subunit during scanning.


2008 ◽  
Vol 28 (22) ◽  
pp. 6877-6888 ◽  
Author(s):  
Pankaj V. Alone ◽  
Chune Cao ◽  
Thomas E. Dever

ABSTRACT Selection of the AUG start codon for translation in eukaryotes is governed by codon-anticodon interactions between the initiator Met-tRNAi Met and the mRNA. Translation initiation factor 2 (eIF2) binds Met-tRNAi Met to the 40S ribosomal subunit, and previous studies identified Sui− mutations in eIF2 that enhanced initiation from a noncanonical UUG codon, presumably by impairing Met-tRNAi Met binding. Consistently, an eIF2γ-N135D GTP-binding domain mutation impairs Met-tRNAi Met binding and causes a Sui− phenotype. Intragenic A208V and A382V suppressor mutations restore Met-tRNAi Met binding affinity and cell growth; however, only A208V suppresses the Sui− phenotype associated with the eIF2γ-N135D mutation. An eIF2γ-A219T mutation impairs Met-tRNAi Met binding but unexpectedly enhances the fidelity of initiation, suppressing the Sui− phenotype associated with the eIF2γ-N135D,A382V mutant. Overexpression of eIF1, which is thought to monitor codon-anticodon interactions during translation initiation, likewise suppresses the Sui− phenotype of the eIF2γ mutants. We propose that structural alterations in eIF2γ subtly alter the conformation of Met-tRNAi Met on the 40S subunit and thereby affect the fidelity of start codon recognition independent of Met-tRNAi Met binding affinity.


2021 ◽  
Vol 14 (668) ◽  
pp. eabc5429
Author(s):  
Mauricio M. Oliveira ◽  
Mychael V. Lourenco ◽  
Francesco Longo ◽  
Nicole P. Kasica ◽  
Wenzhong Yang ◽  
...  

Neuronal protein synthesis is essential for long-term memory consolidation, and its dysregulation is implicated in various neurodegenerative disorders, including Alzheimer’s disease (AD). Cellular stress triggers the activation of protein kinases that converge on the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), which attenuates mRNA translation. This translational inhibition is one aspect of the integrated stress response (ISR). We found that postmortem brain tissue from AD patients showed increased phosphorylation of eIF2α and reduced abundance of eIF2B, another key component of the translation initiation complex. Systemic administration of the small-molecule compound ISRIB (which blocks the ISR downstream of phosphorylated eIF2α) rescued protein synthesis in the hippocampus, measures of synaptic plasticity, and performance on memory-associated behavior tests in wild-type mice cotreated with salubrinal (which inhibits translation by inducing eIF2α phosphorylation) and in both β-amyloid-treated and transgenic AD model mice. Thus, attenuating the ISR downstream of phosphorylated eIF2α may restore hippocampal protein synthesis and delay cognitive decline in AD patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Victor Barrenechea ◽  
Maryhory Vargas-Reyes ◽  
Miguel Quiliano ◽  
Pohl Milón

Tetracycline has positively impacted human health as well as the farming and animal industries. Its extensive usage and versatility led to the spread of resistance mechanisms followed by the development of new variants of the antibiotic. Tetracyclines inhibit bacterial growth by impeding the binding of elongator tRNAs to the ribosome. However, a small number of reports indicated that Tetracyclines could also inhibit translation initiation, yet the molecular mechanism remained unknown. Here, we use biochemical and computational methods to study how Oxytetracycline (Otc), Demeclocycline (Dem), and Tigecycline (Tig) affect the translation initiation phase of protein synthesis. Our results show that all three Tetracyclines induce Initiation Factor IF3 to adopt a compact conformation on the 30S ribosomal subunit, similar to that induced by Initiation Factor IF1. This compaction was faster for Tig than Dem or Otc. Furthermore, all three tested tetracyclines affected IF1-bound 30S complexes. The dissociation rate constant of IF1 in early 30S complexes was 14-fold slower for Tig than Dem or Otc. Late 30S initiation complexes (30S pre-IC or IC) exhibited greater IF1 stabilization by Tig than for Dem and Otc. Tig and Otc delayed 50S joining to 30S initiation complexes (30S ICs). Remarkably, the presence of Tig considerably slowed the progression to translation elongation and retained IF1 in the resulting 70S initiation complex (70S IC). Molecular modeling of Tetracyclines bound to the 30S pre-IC and 30S IC indicated that the antibiotics binding site topography fluctuates along the initiation pathway. Mainly, 30S complexes show potential contacts between Dem or Tig with IF1, providing a structural rationale for the enhanced affinity of the antibiotics in the presence of the factor. Altogether, our data indicate that Tetracyclines inhibit translation initiation by allosterically perturbing the IF3 layout on the 30S, retaining IF1 during 70S IC formation, and slowing the transition toward translation elongation. Thus, this study describes a new complementary mechanism by which Tetracyclines may inhibit bacterial protein synthesis.


Sign in / Sign up

Export Citation Format

Share Document