scholarly journals ETFL: A formulation for flux balance models accounting for expression, thermodynamics, and resource allocation constraints

2019 ◽  
Author(s):  
Pierre Salvy ◽  
Vassily Hatzimanikatis

AbstractSince the introduction of metabolic models and flux balance analysis (FBA) in systems biology, several attempts have been made to add expression data. However, directly accounting for enzyme and mRNA production in the mathematical programming formulation is challenging because of macromolecules, which introduces a bilinear term in the mass-balance equations that become harder to solve than linear formulations like FBA. Furthermore, there have been no attempts to include thermodynamic constraints in these formulations, which would yield an even more complex mixed-integer non-linear problem.We propose here a new framework, called Expression and Thermodynamics Flux (ETFL), as a new ME-model implementation. ETFL is a top-down model formulation, from metabolism to RNA synthesis, that simulates thermodynamic-compliant intracellular fluxes as well as enzyme and mRNA concentration levels. The formulation results in a mixed-integer linear problem (MILP) that enables both relative and absolute metabolite, protein, and mRNA concentration integration. The proposed formulation is compatible with mainstream MILP solvers and does not require a non-linear solver. It also accounts for growth-dependent parameters, such as relative protein or mRNA content.We present here the formulation of ETFL along with its validation using results obtained from a well-characterizedE. colimodel. We show that ETFL is able to reproduce proteome-limited growth, which FBA cannot. We also subject it to different analyses, including the prediction of feasible mRNA and enzyme concentrations in the cell, and propose ETFL-based adaptations of other common FBA-based procedures.The software is available on our public repository athttps://github.com/EPFL-LCSB/etfl.Author summaryMetabolic modeling is a useful tool for biochemists who want to tweak biological networks for the direct expression of key products, such as biofuels, specialty chemicals, or drug candidates. To provide more accurate models, several attempts have been made to account for protein expression and growth-dependent parameters, key components of biological networks, though this is computationally challenging, especially when also attempting to include thermodynamics. To the best of our knowledge, there is no published methods integrating these three types of constraints in one model. We propose here a transparent mathematical formulation to model both expression and metabolism of a cell, along with a reformulation that allows a computationally tractable inclusion of growth-dependent parameters and thermodynamics. We demonstrate good performance using community-standard software, and propose ways to adapt classical modeling studies to expression-enabled models. The incorporation of thermodynamics and growth-dependent variables provide a finer modeling of expression because they eliminate thermodynamically unfeasible solutions and consider phenotypic differences in different growth regimens, which are key for accurate modeling.

2019 ◽  
Author(s):  
Lin Liu ◽  
Alexander Bockmayr

AbstractIntegrated modeling of metabolism and gene regulation continues to be a major challenge in computational biology. While there exist approaches like regulatory flux balance analysis (rFBA), dynamic flux balance analysis (dFBA), resource balance analysis (RBA) or dynamic enzyme-cost flux balance analysis (deFBA) extending classical flux balance analysis (FBA) in various directions, there have been no constraint-based methods so far that allow predicting the dynamics of metabolism taking into account both macromolecule production costs and regulatory events.In this paper, we introduce a new constraint-based modeling framework named regulatory dynamic enzyme-cost flux balance analysis (r-deFBA), which unifies dynamic modeling of metabolism, cellular resource allocation and transcriptional regulation in a hybrid discrete-continuous setting.With r-deFBA, we can predict discrete regulatory states together with the continuous dynamics of reaction fluxes, external substrates, enzymes, and regulatory proteins needed to achieve a cellular objective such as maximizing biomass over a time interval. The dynamic optimization problem underlying r-deFBA can be reformulated as a mixed-integer linear optimization problem, for which there exist efficient solvers.


2013 ◽  
Vol 109 ◽  
pp. 164-176 ◽  
Author(s):  
Silvya Dewi Rahmawati ◽  
Curtis Hays Whitson ◽  
Bjarne Foss

2015 ◽  
Vol 12 (2) ◽  
pp. 660-690 ◽  
Author(s):  
Brett G. Olivier ◽  
Frank T. Bergmann

Summary Constraint-based modeling is a well established modelling methodology used to analyze and study biological networks on both a medium and genome scale. Due to their large size, genome scale models are typically analysed using constraint-based optimization techniques. One widely used method is Flux Balance Analysis (FBA) which, for example, requires a modelling description to include: the definition of a stoichiometric matrix, an objective function and bounds on the values that fluxes can obtain at steady state.The Flux Balance Constraints (FBC) Package extends SBML Level 3 and provides a standardized format for the encoding, exchange and annotation of constraint-based models. It includes support for modelling concepts such as objective functions, flux bounds and model component annotation that facilitates reaction balancing. The FBC package establishes a base level for the unambiguous exchange of genome-scale, constraint-based models, that can be built upon by the community to meet future needs (e. g. by extending it to cover dynamic FBC models).


Author(s):  
Matthias Becker ◽  
Nicolas Ginoux ◽  
Sébastien Martin ◽  
Zsuzsanna Roka

We present a Mixed Integer Linear Programming (MILP) approach in order to model the non-linear problem of minimizing the tire noise function. In a recent work, we proposed an exact solution for the Tire Noise Optimization Problem, dealing with an APproximation of the noise (TNOP-AP). Here we study the original non-linear problem modeling the EXact - or real - noise (TNOP-EX) and propose a new scheme to obtain a solution for the TNOP-EX. Relying on the solution for the TNOP-AP, we use a Branch&Cut framework and develop an exact algorithm to solve the TNOP-EX. We also take more industrial constraints into account. Finally, we compare our experimental results with those obtained by other methods.


2018 ◽  
Vol 15 (1) ◽  
Author(s):  
Brett G. Olivier ◽  
Frank T. Bergmann

AbstractConstraint-based modeling is a well established modeling methodology used to analyze and study biological networks on both a medium and genome scale. Due to their large size and complexity such steady-state flux models are, typically, analyzed using constraint-based optimization techniques, for example, flux balance analysis (FBA). The Flux balance constraints (FBC) Package extends SBML Level 3 and provides a standardized format for the encoding, exchange and annotation of constraint-based models. It includes support for modeling concepts such as objective functions, flux bounds and model component annotation that facilitates reaction balancing. Version two expands on the original release by adding official support for encoding gene-protein associations and their associated elements. In addition to providing the elements necessary to unambiguously encode existing constraint-based models, the FBC Package provides an open platform facilitating the continued, cross-community development of an interoperable, constraint-based model encoding format.


2020 ◽  
Vol 117 (10) ◽  
pp. 3006-3017 ◽  
Author(s):  
Carolina Shene ◽  
Paris Paredes ◽  
Liset Flores ◽  
Allison Leyton ◽  
Juan A. Asenjo ◽  
...  

Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jack Jansma ◽  
Sahar El Aidy

AbstractThe human gut harbors an enormous number of symbiotic microbes, which is vital for human health. However, interactions within the complex microbiota community and between the microbiota and its host are challenging to elucidate, limiting development in the treatment for a variety of diseases associated with microbiota dysbiosis. Using in silico simulation methods based on flux balance analysis, those interactions can be better investigated. Flux balance analysis uses an annotated genome-scale reconstruction of a metabolic network to determine the distribution of metabolic fluxes that represent the complete metabolism of a bacterium in a certain metabolic environment such as the gut. Simulation of a set of bacterial species in a shared metabolic environment can enable the study of the effect of numerous perturbations, such as dietary changes or addition of a probiotic species in a personalized manner. This review aims to introduce to experimental biologists the possible applications of flux balance analysis in the host-microbiota interaction field and discusses its potential use to improve human health.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fernando Santos-Beneit ◽  
Vytautas Raškevičius ◽  
Vytenis A. Skeberdis ◽  
Sergio Bordel

AbstractIn this study we have developed a method based on Flux Balance Analysis to identify human metabolic enzymes which can be targeted for therapeutic intervention against COVID-19. A literature search was carried out in order to identify suitable inhibitors of these enzymes, which were confirmed by docking calculations. In total, 10 targets and 12 bioactive molecules have been predicted. Among the most promising molecules we identified Triacsin C, which inhibits ACSL3, and which has been shown to be very effective against different viruses, including positive-sense single-stranded RNA viruses. Similarly, we also identified the drug Celgosivir, which has been successfully tested in cells infected with different types of viruses such as Dengue, Zika, Hepatitis C and Influenza. Finally, other drugs targeting enzymes of lipid metabolism, carbohydrate metabolism or protein palmitoylation (such as Propylthiouracil, 2-Bromopalmitate, Lipofermata, Tunicamycin, Benzyl Isothiocyanate, Tipifarnib and Lonafarnib) are also proposed.


Author(s):  
Aly-Joy Ulusoy ◽  
Filippo Pecci ◽  
Ivan Stoianov

AbstractThis manuscript investigates the design-for-control (DfC) problem of minimizing pressure induced leakage and maximizing resilience in existing water distribution networks. The problem consists in simultaneously selecting locations for the installation of new valves and/or pipes, and optimizing valve control settings. This results in a challenging optimization problem belonging to the class of non-convex bi-objective mixed-integer non-linear programs (BOMINLP). In this manuscript, we propose and investigate a method to approximate the non-dominated set of the DfC problem with guarantees of global non-dominance. The BOMINLP is first scalarized using the method of $$\epsilon $$ ϵ -constraints. Feasible solutions with global optimality bounds are then computed for the resulting sequence of single-objective mixed-integer non-linear programs, using a tailored spatial branch-and-bound (sBB) method. In particular, we propose an equivalent reformulation of the non-linear resilience objective function to enable the computation of global optimality bounds. We show that our approach returns a set of potentially non-dominated solutions along with guarantees of their non-dominance in the form of a superset of the true non-dominated set of the BOMINLP. Finally, we evaluate the method on two case study networks and show that the tailored sBB method outperforms state-of-the-art global optimization solvers.


Sign in / Sign up

Export Citation Format

Share Document