scholarly journals Regulatory dynamic enzyme-cost flux balance analysis: A unifying framework for constraint-based modeling

2019 ◽  
Author(s):  
Lin Liu ◽  
Alexander Bockmayr

AbstractIntegrated modeling of metabolism and gene regulation continues to be a major challenge in computational biology. While there exist approaches like regulatory flux balance analysis (rFBA), dynamic flux balance analysis (dFBA), resource balance analysis (RBA) or dynamic enzyme-cost flux balance analysis (deFBA) extending classical flux balance analysis (FBA) in various directions, there have been no constraint-based methods so far that allow predicting the dynamics of metabolism taking into account both macromolecule production costs and regulatory events.In this paper, we introduce a new constraint-based modeling framework named regulatory dynamic enzyme-cost flux balance analysis (r-deFBA), which unifies dynamic modeling of metabolism, cellular resource allocation and transcriptional regulation in a hybrid discrete-continuous setting.With r-deFBA, we can predict discrete regulatory states together with the continuous dynamics of reaction fluxes, external substrates, enzymes, and regulatory proteins needed to achieve a cellular objective such as maximizing biomass over a time interval. The dynamic optimization problem underlying r-deFBA can be reformulated as a mixed-integer linear optimization problem, for which there exist efficient solvers.

2020 ◽  
Author(s):  
James D. Brunner ◽  
Nicholas Chia

AbstractDynamic flux balance analysis uses a quasi-steady state assumption to calculate an organism’s metabolic activity at each time-step of a dynamic simulation, using the well-know technique of flux balance analysis. For microbial communities, this calculation is especially costly and involves solving a linear constrained optimization problem for each member of the community at each time step. However, this is unnecessary and inefficient, as prior solutions can be used to inform future time steps. Here, we show that a basis for the space of internal fluxes can be chosen for each microbe in a community and this basis can be used to simulate forward by solving a relatively inexpensive system of linear equations at most time steps, instead of the full optimization problem. Using our method, we can use this solution as long as the resulting metabolic activity remains within the optimization problem’s constraints (i.e. the solution remains feasible). As the solution becomes infeasible, it first becomes a feasible but degenerate solution to the optimization problem, and we can solve a different but related optimization problem to choose an appropriate basis to continue forward simulation. We show using an eight species community that this is an efficient and robust method for computing dynamic flux balance analysis simulations, and so is capable of simulating communities of organisms. We demonstrate that the method gives an approximately 85% speed-up per organism over the standard and widely used method. Our method has been implemented in the Python language and source code is available at https://github.com/jdbrunner/surfin_fba and in the Python Package Index (PyPI) as surfinFBA.Author summaryThe standard method in the field for dynamic flux balance analysis carries a prohibitively high computational cost because it requires solving a linear optimization problem at each time-step. We have developed a novel method for producing solutions to this dynamical system which greatly reduces the number of optimization problems that must be solved. We prove mathematically that we can solve the optimization problem once and simulate the system forward as an ordinary differential equation for some time interval, and solutions to this ODE provide solutions to the optimization problem. Eventually, the system reaches an easily checkable condition which implies that another optimization problem must be solved. We compare our method with the classical method to validate that it provides equivalent solutions in much lower computational time.


2001 ◽  
Vol 280 (3) ◽  
pp. R695-R704 ◽  
Author(s):  
Ramprasad Ramakrishna ◽  
Jeremy S. Edwards ◽  
Andrew McCulloch ◽  
Bernhard O. Palsson

Mitochondrial metabolism is a critical component in the functioning and maintenance of cellular organs. The stoichiometry of biochemical reaction networks imposes constraints on mitochondrial function. A modeling framework, flux-balance analysis (FBA), was used to characterize the optimal flux distributions for maximal ATP production in the mitochondrion. The model predicted the expected ATP yields for glucose, lactate, and palmitate. Genetic defects that affect mitochondrial functions have been implicated in several human diseases. FBA can characterize the metabolic behavior due to genetic deletions at the metabolic level, and the effect of mutations in the tricarboxylic acid (TCA) cycle on mitochondrial ATP production was simulated. The mitochondrial ATP production is severely affected by TCA-cycle mutations. In addition, the model predicts the secretion of TCA-cycle intermediates, which is observed in clinical studies of mitochondriopathies such as those associated with fumarase deficiency. The model provides a systemic perspective to characterize the effect of stoichiometric constraints and specific metabolic fluxes on mitochondrial function.


2015 ◽  
Vol 11 (1) ◽  
pp. 137-145 ◽  
Author(s):  
A. Marcel Willemsen ◽  
Diana M. Hendrickx ◽  
Huub C. J. Hoefsloot ◽  
Margriet M. W. B. Hendriks ◽  
S. Aljoscha Wahl ◽  
...  

This paper presents MetDFBA, a new approach incorporating experimental metabolomics time-series into constraint-based modeling. The method can be used for hypothesis testing and predicting dynamic flux profiles.


2020 ◽  
Vol 117 (10) ◽  
pp. 3006-3017 ◽  
Author(s):  
Carolina Shene ◽  
Paris Paredes ◽  
Liset Flores ◽  
Allison Leyton ◽  
Juan A. Asenjo ◽  
...  

Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jack Jansma ◽  
Sahar El Aidy

AbstractThe human gut harbors an enormous number of symbiotic microbes, which is vital for human health. However, interactions within the complex microbiota community and between the microbiota and its host are challenging to elucidate, limiting development in the treatment for a variety of diseases associated with microbiota dysbiosis. Using in silico simulation methods based on flux balance analysis, those interactions can be better investigated. Flux balance analysis uses an annotated genome-scale reconstruction of a metabolic network to determine the distribution of metabolic fluxes that represent the complete metabolism of a bacterium in a certain metabolic environment such as the gut. Simulation of a set of bacterial species in a shared metabolic environment can enable the study of the effect of numerous perturbations, such as dietary changes or addition of a probiotic species in a personalized manner. This review aims to introduce to experimental biologists the possible applications of flux balance analysis in the host-microbiota interaction field and discusses its potential use to improve human health.


2010 ◽  
Vol 38 (5) ◽  
pp. 1225-1229 ◽  
Author(s):  
Evangelos Simeonidis ◽  
Ettore Murabito ◽  
Kieran Smallbone ◽  
Hans V. Westerhoff

Advances in biological techniques have led to the availability of genome-scale metabolic reconstructions for yeast. The size and complexity of such networks impose limits on what types of analyses one can perform. Constraint-based modelling overcomes some of these restrictions by using physicochemical constraints to describe the potential behaviour of an organism. FBA (flux balance analysis) highlights flux patterns through a network that serves to achieve a particular objective and requires a minimal amount of data to make quantitative inferences about network behaviour. Even though FBA is a powerful tool for system predictions, its general formulation sometimes results in unrealistic flux patterns. A typical example is fermentation in yeast: ethanol is produced during aerobic growth in excess glucose, but this pattern is not present in a typical FBA solution. In the present paper, we examine the issue of yeast fermentation against respiration during growth. We have studied a number of hypotheses from the modelling perspective, and novel formulations of the FBA approach have been tested. By making the observation that more respiration requires the synthesis of more mitochondria, an energy cost related to mitochondrial synthesis is added to the FBA formulation. Results, although still approximate, are closer to experimental observations than earlier FBA analyses, at least on the issue of fermentation.


2022 ◽  
Author(s):  
Javad Zamani ◽  
Sayed-Amir Marashi ◽  
Tahmineh Lohrasebi ◽  
Mohammad-Ali Malboobi ◽  
Esmail Foroozan

Genome-scale metabolic models (GSMMs) have enabled researchers to perform systems-level studies of living organisms. As a constraint-based technique, flux balance analysis (FBA) aids computation of reaction fluxes and prediction of...


Sign in / Sign up

Export Citation Format

Share Document