scholarly journals Sleep deprivation rapidly upregulates serotonin 2A receptor expression via the immediate early gene Egr3

2019 ◽  
Author(s):  
X. Zhao ◽  
K. T. Meyers ◽  
A. McBride ◽  
K. K. Marballi ◽  
A. M. Maple ◽  
...  

AbstractSerotonin 2A receptors (5-HT2ARs) mediate the effects of hallucinogenic drugs and antipsychotic medications, and are reduced in schizophrenia patients’ brains. However, the mechanisms that regulate 5-HT2AR expression remain poorly understood. We show that an environmental stimulus, sleep deprivation, upregulates 5-HT2ARs in the mouse frontal cortex (FC) in just 6-8 hours. This induction requires the immediate early gene transcription factor early growth response 3 (Egr3). Further, EGR3 binds to the Htr2a promoter in the FC in vivo, and drives reporter construct expression in vitro via two Htr2a promoter binding sites. These findings suggest that EGR3 directly regulates FC Htr2a expression in response to physiologic stimuli, providing a mechanism by which environment rapidly alters levels of a brain receptor that mediates symptoms, and treatment, of mental illness.One Sentence SummaryJust 6-8 hours of sleep deprivation upregulates brain levels of the receptor that mediates the response to hallucinogens.

2004 ◽  
Vol 24 (16) ◽  
pp. 7298-7311 ◽  
Author(s):  
Keith Wheaton ◽  
Karl Riabowol

ABSTRACT Fibroblasts lose the ability to replicate in response to growth factors and become unable to express growth-associated immediate-early genes, including c-fos and egr-1, as they become senescent. The serum response factor (SRF), a major transcriptional activator of immediate-early gene promoters, loses the ability to bind to the serum response element (SRE) and becomes hyperphosphorylated in senescent cells. We identify protein kinase C delta (PKCδ) as the kinase responsible for inactivation of SRF both in vitro and endogenously in senescent cells. This is due to a higher level of PKCδ activity as cells age, production of the PKCδ catalytic fragment, and its nuclear localization in senescent but not in low-passage-number cells. The phosphorylation of T160 of SRF by PKCδ in vitro and in vivo led to loss of SRF DNA binding activity. Both the PKCδ inhibitor rottlerin and ectopic expression of a dominant negative form of PKCδ independently restored SRE-dependent transcription and immediate-early gene expression in senescent cells. Modulation of PKCδ activity in vivo with rottlerin or bistratene A altered senescent- and young-cell morphology, respectively. These observations support the idea that the coordinate transcriptional inhibition of several growth-associated genes by PKCδ contributes to the senescent phenotype.


1994 ◽  
Vol 14 (5) ◽  
pp. 3484-3493
Author(s):  
T J Wu ◽  
G Monokian ◽  
D F Mark ◽  
C R Wobbe

VP16 is a herpes simplex virus (HSV)-encoded transcriptional activator protein that is essential for efficient viral replication and as such may be a target for novel therapeutic agents directed against viral gene expression. We have reconstituted transcriptional activation by VP16 in an in vitro system that is dependent on DNA sequences from HSV immediate-early gene promoters and on protein-protein interactions between VP16 and Oct-1 that are required for VP16 activation in vivo. Activation increased synergistically with the number of TAATGARAT elements (the cis-acting element for VP16 activation in vivo) upstream of the core promoter, and mutations of this element that reduce Oct-1 or VP16 DNA binding reduced transactivation in vitro. A VP16 insertion mutant unable to interact with Oct-1 was inactive, but, surprisingly, a deletion mutant lacking the activation domain was approximately 65% as active as the full-length protein. The activation domains of Oct-1 were necessary for activation in reactions containing the VP16 deletion mutant, and they contributed significantly to activation by full-length VP16. Addition of a GA-rich element present in many HSV immediate-early gene enhancers synergistically stimulated VP16-activated transcription. Finally, oligopeptides that are derived from a region of VP16 thought to contact a cellular factor known as HCF (host cell factor) and that inhibit efficient VP16 binding to the TAATGARAT element also specifically inhibited VP16-activated, but not basal, transcription. Amino acid substitutions in one of these peptides identified three residues that are absolutely required for inhibition and presumably for interaction of VP16 with HCF.


1993 ◽  
Vol 13 (2) ◽  
pp. 1238-1250 ◽  
Author(s):  
K M Klucher ◽  
M Sommer ◽  
J T Kadonaga ◽  
D H Spector

To define mechanistically how the human cytomegalovirus (HCMV) major immediate-early (IE) proteins induce early-gene transcription, the IE1 72-kDa protein, the IE2 55-kDa protein, and the IE2 86-kDa protein were analyzed for their ability to activate transcription from an HCMV early promoter in vivo and in vitro. In transient-expression assays in U373MG astrocytoma/glioblastoma and HeLa cells, only the IE2 86-kDa protein was able to activate the HCMV early promoter to high levels. In HeLa cells, the IE1 72-kDa protein was able to activate the promoter to a low but detectable level, and the level of promoter activity observed in response to the IE2 86-kDa protein was increased synergistically following cotransfection of the constructs expressing both IE proteins. To examine the interaction of the HCMV IE proteins with the RNA polymerase II transcription machinery, we assayed the ability of Escherichia coli-synthesized proteins to activate the HCMV early promoter in nuclear extracts prepared from U373MG cells, HeLa cells, and Drosophila embryos. The results of the in vitro experiments correlated well with those obtained in vivo. The basal activity of the promoter was minimal in both the HeLa and U373MG extracts but was stimulated 6- to 10-fold by the IE2 86-kDa protein. With a histone H1-deficient extract from Drosophila embryos, the HCMV early promoter was quite active and was stimulated two- to fourfold by the IE2 86-kDa protein. Addition of histone H1 at 1 molecule per 40 to 50 bp of DNA template significantly repressed basal transcription from this promoter. However, the IE2 86-kDa protein, but none of the other IE proteins, was able to counteract the H1-mediated repression and stimulate transcription at least 10- to 20-fold. The promoter specificity of the activation was demonstrated by the inability of the IE2 86-kDa protein to activate the Drosophila Krüppel promoter in either the presence or absence of histone H1. These results suggest that one mechanism of transcription activation by the IE2 86-kDa protein involves antirepression.


1995 ◽  
Vol 6 (6) ◽  
pp. 725-740 ◽  
Author(s):  
J A Varner ◽  
D A Emerson ◽  
R L Juliano

Cells selected for overexpression of the integrin alpha 5 beta 1 show decreased proliferation and loss of the transformed phenotype. We provide evidence that de novo expression of the integrin alpha 5 beta 1 in HT29 colon carcinoma cells results in the growth arrest of these cells as characterized by reduced DNA synthesis and cellular proliferation in vitro. In fact, expression of integrin alpha 5 beta 1 on these cells induces the transcription of growth arrest specific gene 1 (gas-1), a gene product known to induce cellular quiescence, but blocks transcription of the immediate early genes c-fos, c-jun, and jun B. In vivo, the alpha 5 beta 1 transfectants display dramatically reduced tumorigenicity as well as a highly differentiated phenotype when compared with their pSVneo-transfected counterparts. Surprisingly, ligation of alpha 5 beta 1 on these cells by cell attachment to a fibronectin substrate not only reverses the growth inhibition and gas-1 gene induction but activates immediate early gene transcription. These findings demonstrate that integrin alpha 5 beta 1 expression in the absence of attachment to fibronectin activates a signaling pathway leading to decreased cellular proliferation and that ligation of this receptor with fibronectin reverses this signal, thereby contributing to the proliferation of transformed cells.


Sign in / Sign up

Export Citation Format

Share Document