scholarly journals The molecular determinants of R-roscovitine block of hERG channels

2019 ◽  
Author(s):  
Bryan Cernuda ◽  
Christopher Fernandes ◽  
Salma Allam ◽  
Matthew Orzillo ◽  
Gabrielle Suppa ◽  
...  

AbstractHuman ether-à-go-go-related gene (Kv11.1, or hERG) is a potassium channel that conducts the delayed rectifier potassium current (IKr) during the repolarization phase of cardiac action potentials. hERG channels have a larger pore than other K+channels and can trap many unintended drugs, often resulting in acquired LQTS (aLQTS). R-roscovitine, a cyclin-dependent kinase (CDK) inhibitor that also inhibits L-type calcium channels, inhibits open hERG channels but does not become trapped in the pore. Two-electrode voltage clamp recordings from Xenopus oocytes expressing wild-type (WT) or mutant (T623A, S624A, Y652A, F656A) hERG channels demonstrated that, compared to WT hERG, T623A, Y652A, and F656A inhibition by 200 μM R-roscovitine was ~ 48 %, 29 %, and 73 % weaker, respectively. In contrast, S624A hERG was inhibited more potently than WT hERG, with an ~ 34 % stronger inhibition. These findings were further supported by the IC50 values, which were increased for T623A, Y652A and F656A (by ~5.5, 2.75, and 42 fold respectively) and reduced 1.3 fold for the S624A mutant. Our data suggest that while T623, Y652, and F656 are critical for R-roscovitine-mediated inhibition, S624 may not be. This relatively unique feature, coupled with R-roscovitine’s tolerance in clinical trials, could guide future drug screens. We discuss our findings and how they lend support for the recent Comprehensive In Vitro Proarrhythmia Assay (CiPA) guidelines on the re-evaluation of potentially useful drugs that had failed testing due to unintended interactions with hERG.




2008 ◽  
Vol 108 (4) ◽  
pp. 693-702 ◽  
Author(s):  
Adrienn Szabó ◽  
Norbert Szentandrássy ◽  
Péter Birinyi ◽  
Balázs Horváth ◽  
Gergely Szabó ◽  
...  

Background Despite the widespread clinical application of ropivacaine, there is little information on the cellular cardiac effects of the drug. In the current study, therefore, the concentration-dependent effects of ropivacaine on action potential morphology and the underlying ion currents were studied and compared with those of bupivacaine in isolated canine ventricular cardiomyocytes. Methods Action potentials were recorded from the enzymatically dispersed cells using sharp microelectrodes. Conventional patch clamp and action potential voltage clamp arrangements were used to study the effects of ropivacaine on transmembrane ion currents. Results Ropivacaine induced concentration- and frequency-dependent changes in action potential configuration, including shortening of the action potentials, reduction of their amplitude and maximum velocity of depolarization, suppression of early repolarization, and depression of plateau. Reduction in maximum velocity of depolarization was characterized with an EC50 value of 81 +/- 7 microm at 1 Hz. Qualitatively similar results were obtained with bupivacaine (EC50 = 47 +/- 3 microm). Under voltage clamp conditions, a variety of ion currents were blocked by ropivacaine: L-type calcium current (EC50 = 263 +/- 67 microm), transient outward current (EC50 = 384 +/- 75 microm), inward rectifier potassium current (EC50 = 372 +/- 35 microm), rapid delayed rectifier potassium current (EC50 = 303 +/- 47 microm), and slow delayed rectifier potassium current (EC50 = 106 +/- 18 microm). Conclusions Ropivacaine, similarly to bupivacaine, can modify cardiac action potentials and the underlying ion currents at concentrations higher than the usual therapeutic range. However, in cases of overdose, cardiac complications may be anticipated both during and after anesthesia due to the blockade of various ion currents.



2006 ◽  
Vol 317 (3) ◽  
pp. 1054-1063 ◽  
Author(s):  
Armando Lagrutta ◽  
Jixin Wang ◽  
Bernard Fermini ◽  
Joseph J. Salata


Marine Drugs ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 405 ◽  
Author(s):  
Irene Huang ◽  
Yu-Luan Hsu ◽  
Chien-Chang Chen ◽  
Mei-Fang Chen ◽  
Zhi-Hong Wen ◽  
...  

Memory retrieval dysfunction is a symptom of schizophrenia, autism spectrum disorder (ASD), and absence epilepsy (AE), as well as an early sign of Alzheimer’s disease. To date, few drugs have been reported to enhance memory retrieval. Here, we found that a coral-derived natural product, excavatolide-B (Exc-B), enhances contextual memory retrieval in both wild-type and Cav3.2−/− mice via repressing the delayed rectifier potassium current, thus lowering the threshold for action potential initiation and enhancing induction of long-term potentiation (LTP). The human CACNA1H gene encodes a T-type calcium channel (Cav3.2), and its mutation is associated with schizophrenia, ASD, and AE, which are all characterized by abnormal memory function. Our previous publication demonstrated that Cav3.2−/− mice exhibit impaired contextual-associated memory retrieval, whilst their retrieval of spatial memory and auditory cued memory remain intact. The effect of Exc-B on enhancing the retrieval of context-associated memory provides a hope for novel drug development.



1990 ◽  
Vol 63 (1) ◽  
pp. 72-81 ◽  
Author(s):  
A. Williamson ◽  
B. E. Alger

1. In rat hippocampal pyramidal cells in vitro, a brief train of action potentials elicited by direct depolarizing current pulses injected through an intracellular recording electrode is followed by a medium-duration afterhyperpolarization (mAHP) and a longer, slow AHP. We studied the mAHP with the use of current-clamp techniques in the presence of dibutyryl cyclic adenosine 3',5'-monophosphate (cAMP) to block the slow AHP and isolate the mAHP. 2. The mAHP evoked at hyperpolarized membrane potentials was complicated by a potential generated by the anomalous rectifier current, IQ. The mAHP is insensitive to chloride ions (Cl-), whereas it is sensitive to the extracellular potassium concentration ([K+]o). 3. At slightly depolarized levels, the mAHP is partially Ca2+ dependent, being enhanced by increased [Ca2+]o and BAY K 8644 and depressed by decreased [Ca2+]o, nifedipine, and Cd2+. The Ca2(+)-dependent component of the mAHP was also reduced by 100 microM tetraethylammonium (TEA) and charybdotoxin (CTX), suggesting it is mediated by the voltage- and Ca2(+)-dependent K+ current, IC. 4. Most of the Ca2(+)-independent mAHP was blocked by carbachol, implying that IM plays a major role. In a few cells, a small Ca2(+)- and carbachol-insensitive mAHP component was detectable, and this component was blocked by 10 mM TEA, suggesting it was mediated by the delayed rectifier current, IK. The K+ channel antagonist 4-aminopyridine (4-AP, 500 microM) did not reduce the mAHP. 5. We infer that the mAHP is a complex potential due either to IQ or to the combined effects of IM and IC. The contributions of each current depend on the recording conditions, with IC playing a role when the cells are activated from depolarized potentials and IM dominating at the usual resting potential. IQ is principally responsible for the mAHP recorded at hyperpolarized membrane potentials.



2003 ◽  
Vol 310 (3) ◽  
pp. 710-714 ◽  
Author(s):  
Chengwen Sun ◽  
Jiangqing Du ◽  
Mohan K Raizada ◽  
Colin Sumners




2013 ◽  
Vol 6 (5) ◽  
pp. 1002-1009 ◽  
Author(s):  
Christiaan C. Veerman ◽  
Arie O. Verkerk ◽  
Marieke T. Blom ◽  
Christine A. Klemens ◽  
Pim N.J. Langendijk ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document