scholarly journals Reaction mechanisms of Pol IV, RDR2 and DCL3 drive RNA channeling in the siRNA-directed DNA methylation pathway

2019 ◽  
Author(s):  
Jasleen Singh ◽  
Vibhor Mishra ◽  
Feng Wang ◽  
Hsiao-Yun Huang ◽  
Craig S. Pikaard

SummaryIn eukaryotes with multiple small RNA pathways the mechanisms that channel RNAs within specific pathways are unclear. Here, we reveal the reactions that account for channeling in the siRNA biogenesis phase of the Arabidopsis RNA-directed DNA methylation pathway. The process begins with template DNA transcription by NUCLEAR RNA POLYMERASE IV (Pol IV) whose atypical termination mechanism, induced by nontemplate DNA basepairing, channels transcripts to the associated RNA-dependent RNA polymerase, RDR2. RDR2 converts Pol IV transcripts into double-stranded RNAs then typically adds an extra untemplated 3’ terminal nucleotide to the second strands. The dicer endonuclease, DCL3 cuts resulting duplexes to generate 24 and 23nt siRNAs. The 23nt RNAs bear the untemplated terminal nucleotide of the RDR2 strand and are underrepresented among ARGONAUTE4-associated siRNAs. Collectively, our results provide mechanistic insights into Pol IV termination, Pol IV-RDR2 coupling and RNA channeling from template DNA transcription to siRNA guide strand/passenger strand discrimination.

2021 ◽  
Author(s):  
Andrew Loffer ◽  
Jasleen Singh ◽  
Akihito Fukudome ◽  
Vibhor Mishra ◽  
Feng Wang ◽  
...  

In plants, selfish genetic elements including retrotransposons and DNA viruses are transcriptionally silenced by RNA-directed DNA methylation. Guiding the process are short interfering RNAs (siRNAs) cut by DICER-LIKE 3 (DCL3) from double-stranded precursors of ~30 bp synthesized by NUCLEAR RNA POLYMERASE IV (Pol IV) and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2). We show that Pol IV initiating nucleotide choice, RDR2 initiation 1-2 nt internal to Pol IV transcript ends and RDR2 terminal transferase activity collectively yield a code that influences which end of the precursor is diced and whether 24 or 23 nt siRNAs are generated from the Pol IV or RDR2-transcribed strands. By diversifying the size, sequence, and strand polarity of siRNAs derived from a given precursor, alternative patterns of DCL3 dicing allow maximal siRNA coverage at methylated target loci.


2019 ◽  
Author(s):  
Kaushik Panda ◽  
Andrea D. McCue ◽  
R. Keith Slotkin

AbstractThe plant-specific RNA Polymerase IV (Pol IV) transcribes heterochromatic regions, including many transposable elements, with the well-described role of generating 24 nucleotide (nt) small interfering RNAs (siRNAs). These siRNAs target DNA methylation back to transposable elements to reinforce the boundary between heterochromatin and euchromatin. In the male gametophytic phase of the plant life cycle, pollen, Pol IV switches to generating primarily 21-22 nt siRNAs, but the biogenesis and function of these siRNAs has been enigmatic. In contrast to being pollen-specific, we identified that Pol IV generates these 21-22 nt siRNAs in sporophytic tissues, likely from the same transcripts that are processed into the more abundant 24 nt siRNAs. The 21-22 nt forms are specifically generated by the combined activities of DICER proteins DCL2/DCL4 and can participate in RNA-directed DNA methylation. These 21-22 nt siRNAs are also loaded into ARGONAUTE1, which is known to function in post-transcriptional regulation. Like other plant siRNAs and microRNAs incorporated into AGO1, we find a signature of genic mRNA cleavage at the predicted target site of these siRNAs, suggesting that Pol IV-generated 21-22 nt siRNAs may function to regulate gene transcript abundance. Our data provides support for the existing model that in pollen Pol IV functions in gene regulation.


2020 ◽  
Author(s):  
Zhenxing Wang ◽  
Nicolas Butel ◽  
Juan Santos-González ◽  
Lauriane Simon ◽  
Cecilia Wärdig ◽  
...  

AbstractHybridization of plants that differ in number of chromosome sets (ploidy) frequently causes endosperm failure and seed arrest, a phenomenon referred to as triploid block. Mutation in NRPD1, encoding the largest subunit of the plant-specific RNA Polymerase IV (Pol IV), can suppress the triploid block. Pol IV generates short RNAs required to guide de novo methylation in the RNA-directed DNA methylation (RdDM) pathway. In this study, we found that the ability of mutants in the RdDM pathway to suppress the triploid block depends on their degree of inbreeding. While nrpd1 is able to suppress in the first homozygous generation, mutants in RDR2, NRPE1, and DRM2 require at least one additional round of inbreeding to exert a suppressive effect. Inbreeding of nrpd1 was connected with a transgenerational loss of non-CG DNA methylation on sites jointly regulated by CHROMOMETHYLASES 2 and 3. Our data thus reveal that loss of RdDM function differs in its effect in early and late generations and that Pol IV acts at an early stage of triploid block establishment.One-sentence summaryInbreeding of mutants impaired in RdDM components transgenerationally enhanced their ability to suppress the triploid block.


2020 ◽  
Vol 375 (1795) ◽  
pp. 20190417 ◽  
Author(s):  
Kaushik Panda ◽  
Andrea D. McCue ◽  
R. Keith Slotkin

The plant-specific RNA Polymerase IV (Pol IV) transcribes heterochromatic regions, including many transposable elements (TEs), with the well-described role of generating 24 nucleotide (nt) small interfering RNAs (siRNAs). These siRNAs target DNA methylation back to TEs to reinforce the boundary between heterochromatin and euchromatin. In the male gametophytic phase of the plant life cycle, pollen, Pol IV switches to generating primarily 21–22 nt siRNAs, but the biogenesis and function of these siRNAs have been enigmatic. In contrast to being pollen-specific, we identified that Pol IV generates these 21–22 nt siRNAs in sporophytic tissues, likely from the same transcripts that are processed into the more abundant 24 nt siRNAs. The 21–22 nt forms are specifically generated by the combined activities of DICER proteins DCL2/DCL4 and can participate in RNA-directed DNA methylation. These 21–22 nt siRNAs are also loaded into ARGONAUTE1 (AGO1), which is known to function in post-transcriptional gene regulation. Like other plant siRNAs and microRNAs incorporated into AGO1, we find a signature of genic mRNA cleavage at the predicted target site of these siRNAs, suggesting that Pol IV-generated 21–22 nt siRNAs may function to regulate gene transcript abundance. Our data provide support for the existing model that in pollen Pol IV functions in gene regulation. This article is part of a discussion meeting issue ‘Crossroads between transposons and gene regulation’.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Todd Blevins ◽  
Ram Podicheti ◽  
Vibhor Mishra ◽  
Michelle Marasco ◽  
Jing Wang ◽  
...  

In Arabidopsis thaliana, abundant 24 nucleotide small interfering RNAs (24 nt siRNA) guide the cytosine methylation and silencing of transposons and a subset of genes. 24 nt siRNA biogenesis requires nuclear RNA polymerase IV (Pol IV), RNA-dependent RNA polymerase 2 (RDR2) and DICER-like 3 (DCL3). However, siRNA precursors are mostly undefined. We identified Pol IV and RDR2-dependent RNAs (P4R2 RNAs) that accumulate in dcl3 mutants and are diced into 24 nt RNAs by DCL3 in vitro. P4R2 RNAs are mostly 26-45 nt and initiate with a purine adjacent to a pyrimidine, characteristics shared by Pol IV transcripts generated in vitro. RDR2 terminal transferase activity, also demonstrated in vitro, may account for occasional non-templated nucleotides at P4R2 RNA 3’ termini. The 24 nt siRNAs primarily correspond to the 5’ or 3’ ends of P4R2 RNAs, suggesting a model whereby siRNAs are generated from either end of P4R2 duplexes by single dicing events.


2019 ◽  
Vol 75 (3) ◽  
pp. 576-589.e5 ◽  
Author(s):  
Jasleen Singh ◽  
Vibhor Mishra ◽  
Feng Wang ◽  
Hsiao-Yun Huang ◽  
Craig S. Pikaard

2019 ◽  
Vol 47 (17) ◽  
pp. 9024-9036 ◽  
Author(s):  
Jered M Wendte ◽  
Jeremy R Haag ◽  
Olga M Pontes ◽  
Jasleen Singh ◽  
Sara Metcalf ◽  
...  

Abstract In plants, nuclear multisubunit RNA polymerases IV and V are RNA Polymerase II-related enzymes that synthesize non-coding RNAs for RNA-directed DNA methylation (RdDM) and transcriptional gene silencing. Here, we tested the importance of the C-terminal domain (CTD) of Pol IV’s largest subunit given that the Pol II CTD mediates multiple aspects of Pol II transcription. We show that the CTD is dispensable for Pol IV catalytic activity and Pol IV termination-dependent activation of RNA-DEPENDENT RNA POLYMERASE 2, which partners with Pol IV to generate dsRNA precursors of the 24 nt siRNAs that guide RdDM. However, 24 nt siRNA levels decrease ∼80% when the CTD is deleted. RNA-dependent cytosine methylation is also reduced, but only ∼20%, suggesting that siRNA levels typically exceed the levels needed for methylation of most loci. Pol IV-dependent loci affected by loss of the CTD are primarily located in chromosome arms, similar to loci dependent CLSY1/2 or SHH1, which are proteins implicated in Pol IV recruitment. However, deletion of the CTD does not phenocopy clsy or shh1 mutants, consistent with the CTD affecting post-recruitment aspects of Pol IV activity at target loci.


2021 ◽  
Author(s):  
Akihito Fukudome ◽  
Jasleen Singh ◽  
Vibhor Mishra ◽  
Eswar Reddem ◽  
Francisco Martinez-Marquez ◽  
...  

AbstractRNA-dependent RNA polymerases play essential roles in RNA-mediated gene silencing in eukaryotes. In Arabidopsis, RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) physically interacts with DNA-dependent NUCLEAR RNA POLYMERASE IV (Pol IV) and their activities are tightly coupled, with Pol IV transcriptional arrest or termination, involving the nontemplate DNA strand, somehow enabling RDR2 to engage Pol IV transcripts and generate double-stranded RNAs. The dsRNAs are then released from the Pol IV-RDR2 complex and diced into siRNAs that guide RNA-directed DNA methylation and silencing. Here we report the structure of full-length RDR2, at an overall resolution of 3.1 Å, determined by cryo-electron microscopy. The N-terminal region contains an RNA-recognition motif (RRM) adjacent to a positively charged channel that leads to a catalytic center with striking structural homology to the catalytic centers of multisubunit DNA-dependent RNA polymerases. We show that RDR2 initiates 1-2 nucleotides (nt) internal to the 3’ ends of its templates and can transcribe the RNA of an RNA-DNA hybrid provided that 9 or more nucleotides at the RNA’s 3’ end is unpaired. Using a nucleic acid configuration that mimics the arrangement of RNA and DNA strands upon Pol IV transcriptional arrest, we show that displacement of the RNA 3’ end occurs as the DNA template and non-template strands reanneal, enabling RDR2 transcription. These results suggest a model in which Pol IV arrest and backtracking displaces the RNA 3’ end as the DNA strands reanneal, allowing RDR2 to engage the RNA and transcribe the second strand.SignificanceRDR2 is critical for siRNA-directed DNA methylation in Arabidopsis, functioning in physical association with DNA-dependent Pol IV to synthesize the second strands of double-stranded siRNA precursors. Basepairing between the DNA template strand transcribed by Pol IV and the nontemplate DNA strand is known to induce Pol IV arrest and Pol IV-RDR2 transcriptional coupling, but how this occurs is unknown. We report the structure of RDR2 and experimental evidence for how RDR2 engages its RNA templates and initiates transcription. RDR2 engages the ends of RNAs displaced from RNA-DNA hybrids, suggesting a model in which Pol IV arrest and backtracking, accompanied by DNA strand reannealing, extrudes the 3’ end of the Pol IV transcript, allowing RNA engagement and second-strand synthesis.


Sign in / Sign up

Export Citation Format

Share Document