selfish genetic elements
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 52)

H-INDEX

29
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Aniruddha Samajdar ◽  
Tamoghna Chowdhury ◽  
Saibal Chatterjee

Piwi-interacting RNAs (piRNAs) are an animal-specific class of germline-enriched small non-coding RNAs that shape transcriptome, as well as ensure genomic integrity and fertility by regulating transposons and other selfish genetic elements. In Caenorhabditis elegans mature piRNAs are 21-nucleotides long, begin with a monophosphorylated uridine, and they associate with PRG-1 to form piRISCs that scan the transcriptome for non-self sequences. However, these piRNAs are born as longer 5-capped transcripts, where PARN-1, a 3-5 exoribonuclease, contributes to the formation of the mature 3-end. But, till date, the 5-processing events remain elusive. We demonstrate that the recently identified endoribonuclease activity of XRN-2 is involved in the processing of the 5-end of precursor piRNAs in worms. Depletion of XRN-2 results in reduced mature piRNA levels, with concomitant increase in levels of the 5-capped precursors. We also reveal that the piRNAs born as longer precursor molecules (>60 nt), prior to 5-end processing, undergo ENDU-1-mediated endoribonucleolytic processing of their 3-ends. Our in vitro RNA-protein interaction studies unravel the mechanistic interactions between XRN-2 and PRG-1 towards the formation of mature 5-ends of piRNAs. In vivo experiments employing prg-1 mutant worms indicate that XRN-2 has the potential to perform clearance of precursors that are not bound and protected by PRG-1. Finally, we also demonstrate that XRN-2 is not only important for the generation of mature piRNAs and piRNA-dependent endo-siRNAs, but through yet unknown pathways, it also affects piRNA-independent endo-siRNAs that shape transcriptome, as well as contribute to genomic integrity via regulation of transposable elements.


2021 ◽  
Vol 118 (49) ◽  
pp. e2107413118
Author(s):  
Georg Oberhofer ◽  
Tobin Ivy ◽  
Bruce A. Hay

One strategy for population suppression seeks to use gene drive to spread genes that confer conditional lethality or sterility, providing a way of combining population modification with suppression. Stimuli of potential interest could be introduced by humans, such as an otherwise benign virus or chemical, or occur naturally on a seasonal basis, such as a change in temperature. Cleave and Rescue (ClvR) selfish genetic elements use Cas9 and guide RNAs (gRNAs) to disrupt endogenous versions of an essential gene while also including a Rescue version of the essential gene resistant to disruption. ClvR spreads by creating loss-of-function alleles of the essential gene that select against those lacking it, resulting in populations in which the Rescue provides the only source of essential gene function. As a consequence, if function of the Rescue, a kind of Trojan horse now omnipresent in a population, is condition dependent, so too will be the survival of that population. To test this idea, we created a ClvR in Drosophila in which Rescue activity of an essential gene, dribble, requires splicing of a temperature-sensitive intein (TS-ClvRdbe). This element spreads to transgene fixation at 23 °C, but when populations now dependent on Ts-ClvRdbe are shifted to 29 °C, death and sterility result in a rapid population crash. These results show that conditional population elimination can be achieved. A similar logic, in which Rescue activity is conditional, could also be used in homing-based drive and to bring about suppression and/or killing of specific individuals in response to other stimuli.


2021 ◽  
Vol 55 (1) ◽  
pp. 401-425
Author(s):  
Cara L. Brand ◽  
Mia T. Levine

Repeat-enriched genomic regions evolve rapidly and yet support strictly conserved functions like faithful chromosome transmission and the preservation of genome integrity. The leading resolution to this paradox is that DNA repeat–packaging proteins evolve adaptively to mitigate deleterious changes in DNA repeat copy number, sequence, and organization. Exciting new research has tested this model of coevolution by engineering evolutionary mismatches between adaptively evolving chromatin proteins of one species and the DNA repeats of a close relative. Here, we review these innovative evolution-guided functional analyses. The studies demonstrate that vital, chromatin-mediated cellular processes, including transposon suppression, faithful chromosome transmission, and chromosome retention depend on species-specific versions of chromatin proteins that package species-specific DNA repeats. In many cases, the ever-evolving repeats are selfish genetic elements, raising the possibility that chromatin is a battleground of intragenomic conflict.


Author(s):  
Christina Lehmann ◽  
Christian Pohl

Selfish genetic elements that act as post-segregation distorters cause lethality in non-carrier individuals after fertilization. Two post-segregation distorters have been previously identified in Caenorhabditis elegans, the peel-1/zeel-1 and the sup-35/pha-1 elements. These elements seem to act as modification-rescue systems, also called toxin/antidote pairs. Here we show that the maternal-effect toxin/zygotic antidote pair sup-35/pha-1 is required for proper expression of apical junction (AJ) components in epithelia and that sup-35 toxicity increases when pathways that establish and maintain basal epithelial characteristics, die-1, elt-1, lin-26, and vab-10, are compromised. We demonstrate that pha-1(e2123) embryos, which lack the antidote, are defective in epidermal morphogenesis and frequently fail to elongate. Moreover, seam cells are frequently misshaped and mispositioned and cell bond tension is reduced in pha-1(e2123) embryos, suggesting altered tissue material properties in the epidermis. Several aspects of this phenotype can also be induced in wild-type embryos by exerting mechanical stress through uniaxial loading. Seam cell shape, tissue mechanics, and elongation can be restored in pha-1(e2123) embryos if expression of the AJ molecule DLG-1/Discs large is reduced. Thus, our experiments suggest that maternal-effect toxicity disrupts proper development of the epidermis which involves distinct transcriptional regulators and AJ components.


2021 ◽  
Author(s):  
Mathilde Dupeyron ◽  
Tobias Baril ◽  
Alex Hayward

DDE transposons are widespread selfish genetic elements, often comprising a large proportion of eukaryotic genomic content. DDE transposons have also made important contributions to varied host functions during eukaryotic evolution, and their transposases may be the most abundant and ubiquitous genes in nature. Yet much remains unknown about their basic biology. We employ a broadscale screen of DDE transposase diversity to characterise major evolutionary patterns for all 19 DDE transposon superfamilies. We identify considerable variation in DDE transposon superfamily size, and find a dominant association with animal hosts. While few DDE transposon superfamilies specialise in plants or fungi, the four largest superfamilies contain major plant-associated clades, at least partially underlying their relative success. We recover a pattern of host conservation among DDE transposon lineages, punctuated by occasional horizontal transfer to distantly related hosts. Host range and horizontal transfer are strongly positively correlated with DDE transposon superfamily size, arguing against variation in the capacity for generalism. We find that rates of horizontal transfer decrease sharply with increasing levels of host taxonomy, supporting the existence of host-associated barriers to DDE transposon spread. Overall, despite their relatively simple genetic structure, our results imply that trade-offs in host adaptation are important in defining DDE transposon-host relationships and evolution. In addition, our study provides a phylogenetic framework to facilitate the identification and further analysis of DDE transposons.


2021 ◽  
Author(s):  
Andrew Loffer ◽  
Jasleen Singh ◽  
Akihito Fukudome ◽  
Vibhor Mishra ◽  
Feng Wang ◽  
...  

In plants, selfish genetic elements including retrotransposons and DNA viruses are transcriptionally silenced by RNA-directed DNA methylation. Guiding the process are short interfering RNAs (siRNAs) cut by DICER-LIKE 3 (DCL3) from double-stranded precursors of ~30 bp synthesized by NUCLEAR RNA POLYMERASE IV (Pol IV) and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2). We show that Pol IV initiating nucleotide choice, RDR2 initiation 1-2 nt internal to Pol IV transcript ends and RDR2 terminal transferase activity collectively yield a code that influences which end of the precursor is diced and whether 24 or 23 nt siRNAs are generated from the Pol IV or RDR2-transcribed strands. By diversifying the size, sequence, and strand polarity of siRNAs derived from a given precursor, alternative patterns of DCL3 dicing allow maximal siRNA coverage at methylated target loci.


2021 ◽  
Author(s):  
Jeffrey Vedanayagam ◽  
Ching-Jung Lin ◽  
Eric C. Lai

Meiotic drivers are a class of selfish genetic elements that are widespread across eukaryotes. Their activities are often detrimental to organismal fitness and thus trigger drive suppression to ensure fair segregation during meiosis. Accordingly, their existence is frequently hidden in genomes, and their molecular functions are little known. Here, we trace evolutionary steps that generated the Dox meiotic drive system in Drosophila simulans (Dsim), which distorts male:female balance (sex-ratio) by depleting male progeny. We show that Dox emerged via stepwise mobilization and acquisition of portions of multiple D. melanogaster genes, including the sperm chromatin packaging gene protamine. Moreover, we reveal novel Dox homologs in Dsim and massive, recent, amplification of Dox superfamily genes specifically on X chromosomes of its closest sister species D. mauritiana (Dmau) and D. sechellia (Dsech). The emergence of Dox superfamily genes is tightly associated with 1.688 family satellite repeats that flank de novo genomic copies. In concert, we find coordinated emergence and diversification of autosomal hairpin RNA/siRNAs loci that target subsets of Dox superfamily genes across simulans clade species. Finally, an independent set of protamine amplifications the Y chromosome of D. melanogaster indicates that protamine genes are frequent and recurrent players in sex chromosome dynamics. Overall, we reveal fierce genetic arms races between meiotic drive factors and siRNA suppressors associated with recent speciation.


PLoS Biology ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. e3001309
Author(s):  
Diamantis Sellis ◽  
Frédéric Guérin ◽  
Olivier Arnaiz ◽  
Walker Pett ◽  
Emmanuelle Lerat ◽  
...  

Ciliates are unicellular eukaryotes with both a germline genome and a somatic genome in the same cytoplasm. The somatic macronucleus (MAC), responsible for gene expression, is not sexually transmitted but develops from a copy of the germline micronucleus (MIC) at each sexual generation. In the MIC genome of Paramecium tetraurelia, genes are interrupted by tens of thousands of unique intervening sequences called internal eliminated sequences (IESs), which have to be precisely excised during the development of the new MAC to restore functional genes. To understand the evolutionary origin of this peculiar genomic architecture, we sequenced the MIC genomes of 9 Paramecium species (from approximately 100 Mb in Paramecium aurelia species to >1.5 Gb in Paramecium caudatum). We detected several waves of IES gains, both in ancestral and in more recent lineages. While the vast majority of IESs are single copy in present-day genomes, we identified several families of mobile IESs, including nonautonomous elements acquired via horizontal transfer, which generated tens to thousands of new copies. These observations provide the first direct evidence that transposable elements can account for the massive proliferation of IESs in Paramecium. The comparison of IESs of different evolutionary ages indicates that, over time, IESs shorten and diverge rapidly in sequence while they acquire features that allow them to be more efficiently excised. We nevertheless identified rare cases of IESs that are under strong purifying selection across the aurelia clade. The cases examined contain or overlap cellular genes that are inactivated by excision during development, suggesting conserved regulatory mechanisms. Similar to the evolution of introns in eukaryotes, the evolution of Paramecium IESs highlights the major role played by selfish genetic elements in shaping the complexity of genome architecture and gene expression.


2021 ◽  
pp. 151-179
Author(s):  
J. Arvid Ågren

The initial success of the gene’s-eye view came from making sense of old problems in evolutionary biology, in particular those related to social behaviour. It also stimulated new empirical research areas. This chapter is about three such new areas. The first is extended phenotypes, which are examples of phenotypic effects that occur outside of the body in which a gene is located. The second area is greenbeard genes, which gets its name from the thought-experiment devised to show that for altruism to evolve it is the relatedness between the actor and the recipient at the locus underlying the altruistic behaviour that matters, not the genome-wide relatedness. Finally, selfish genetic elements are genetic elements that have the ability to promote their own transmission even if it come at the expense of the fitness of the individual organism. The chapter outlines the current understanding of these topics and the role of the gene’s-eye view in uncovering them.


2021 ◽  
Author(s):  
Georg Oberhofer ◽  
Bruce Hay ◽  
Tobin Ivy

One strategy for population suppression seeks to use gene drive to spread genes that confer conditional lethality or sterility, providing a way of combining population modification with suppression. Stimuli of potential interest could be introduced by humans, such as an otherwise benign virus or chemical, or occur naturally on a seasonal basis, such as a change in temperature. Cleave and Rescue (ClvR) selfish genetic elements use Cas9 and gRNAs to disrupt endogenous versions of an essential gene, while also including a Rescue version of the essential gene resistant to disruption. ClvR spreads by creating loss-of-function alleles of the essential gene that select against those lacking it, resulting in populations in which the Rescue provides the only source of essential gene function. In consequence, if function of the Rescue, a kind of Trojan horse now omnipresent in a population, is condition-dependent, so too will be the survival of that population. To test this idea we created a ClvR in Drosophila in which Rescue activity of an essential gene, dribble, requires splicing of a temperature-sensitive intein (TS-ClvRdbe). This element spreads to transgene fixation at 23° C, but when populations now dependent on TS-ClvRdbe are shifted to 29° C death and sterility result in a rapid population crash. These results show that conditional population elimination can be achieved. A similar logic, in which Rescue activity is conditional, could also be used in HEG-based drive, and to bring about suppression and/or killing of specific individuals in response to other stimuli.


Sign in / Sign up

Export Citation Format

Share Document