scholarly journals Low-Density EEG for Neural Activity Reconstruction Using Multivariate Empirical Mode Decomposition

2019 ◽  
Author(s):  
Andrés Felipe Soler ◽  
Pablo A. Muñoz-Gutiérrez ◽  
Maximiliano Bueno-López ◽  
Eduardo Giraldo ◽  
Marta Molinas

AbstractSeveral approaches can be used for estimating neural activity. The main differences between them are in the apriori information used and their sensibility to high noise levels. Empirical Mode Decomposition (EMD) has been recently applied to Electroencephalography EEG-based neural activity reconstruction to provide apriori time-frequency information to improve the neural activity estimation. EMD has the specific ability to identify independent oscillatory modes in non-stationary signals with multiple oscillatory components. The various attempts to use EMD in EEG analysis, however, did not provide yet the best reconstructions due to the intrinsic mode mixing problem of EMD. Some previous works have used a single-channel analysis and in other cases, multiple-channel have been used for other applications. In this paper, we present a study about multiple-channel analysis using Multivariate Empirical Mode Decomposition (MEMD) as a method to attenuate the mode mixing problem and to provide apriori useful time-frequency information to the reconstruction of neuronal activity using several low-density EEG electrode montages. The methods were evaluated over real and synthetic EEG data, in which the reconstructions were performed using multiple sparse priors (MSP) method with several electrode numbers of 32, 16, and 8, and the source reconstruction quality was measured using the Wasserstein Metric. Comparing the solutions when no pre-processing was made and when MEMD was applied, the source reconstructions were improved using MEMD as apriori information in the low-density montage of 8 and 16 electrodes. The mean source reconstruction error on a real EEG dataset was reduced a 59.42% and 66.04% for the 8 and 16 electrodes montages respectively, and on a simulated EEG with three active sources, the mean error was reduced an 87.31% and 31.45% for the same electrodes montages.

2020 ◽  
Vol 14 ◽  
Author(s):  
Andres Soler ◽  
Pablo A. Muñoz-Gutiérrez ◽  
Maximiliano Bueno-López ◽  
Eduardo Giraldo ◽  
Marta Molinas

2021 ◽  
pp. 107754632110069
Author(s):  
Sandeep Sony ◽  
Ayan Sadhu

In this article, multivariate empirical mode decomposition is proposed for damage localization in structures using limited measurements. Multivariate empirical mode decomposition is first used to decompose the acceleration responses into their mono-component modal responses. The major contributing modal responses are then used to evaluate the modal energy for the respective modes. A damage localization feature is proposed by calculating the percentage difference in the modal energies of damaged and undamaged structures, followed by the determination of the threshold value of the feature. The feature of the specific sensor location exceeding the threshold value is finally used to identify the location of structural damage. The proposed method is validated using a suite of numerical and full-scale studies. The validation is further explored using various limited measurement cases for evaluating the feasibility of using a fewer number of sensors to enable cost-effective structural health monitoring. The results show the capability of the proposed method in identifying as minimal as 2% change in global modal parameters of structures, outperforming the existing time–frequency methods to delineate such minor global damage.


2020 ◽  
Author(s):  
Eduardo Arrufat-Pié ◽  
Mario Estévez-Báez ◽  
José Mario Estévez-Carreras ◽  
Calixto Machado Curbelo ◽  
Gerry Leisman ◽  
...  

AbstractConsidering the properties of the empirical mode decomposition to extract from a signal its natural oscillatory components known as intrinsic mode functions (IMFs), the spectral analysis of these IMFs could provide a novel alternative for the quantitative EEG analysis without a priori establish more or less arbitrary band limits. This approach has begun to be used in the last years for studies of EEG records of patients included in database repositories or including a low number of individuals or of limited EEG leads, but a detailed study in healthy humans has not yet been reported. Therefore, in this study the aims were to explore and describe the main spectral indices of the IMFs of the EEG in healthy humans using a method based on the FFT and another on the Hilbert-Huang transform (HHT). The EEG of 34 healthy volunteers was recorded and decomposed using a recently developed multivariate empirical mode decomposition algorithm. Extracted IMFs were submitted to spectral analysis with, and the results were compared with an ANOVA test. The first six decomposed IMFs from the EEG showed frequency values in the range of the classical bands of the EEG (1.5 to 56 Hz). Both methods showed in general similar results for mean weighted frequencies and estimations of power spectral density, although the HHT is recommended because of its better frequency resolution. It was shown the presence of the mode-mixing problem producing a slight overlapping of spectral frequencies mainly between the IMF3 and IMF4 modes.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Jing Yuan ◽  
Zhengjia He ◽  
Jun Ni ◽  
Adam John Brzezinski ◽  
Yanyang Zi

Various faults inevitably occur in mechanical systems and may result in unexpected failures. Hence, fault detection is critical to reduce unscheduled downtime and costly breakdowns. Empirical mode decomposition (EMD) is an adaptive time-frequency domain signal processing method, potentially suitable for nonstationary and/or nonlinear processes. However, the EMD method suffers from several problems such as mode mixing, defined as intrinsic mode functions (IMFs) with incorrect scales. In this paper, an ensemble noise-reconstructed EMD method is proposed to ameliorate the mode mixing problem and denoise IMFs for enhancing fault signatures. The proposed method defines the IMF components as an ensemble mean of EMD trials, where each trial is obtained by sifting signals that have been reconstructed using the estimated noise present in the measured signal. Unlike traditional denoising methods, the noise inherent in the input data is reconstructed and used to reduce the background noise. Furthermore, the reconstructed noise helps to project different scales of the signal onto their corresponding IMFs, instrumental in alleviating the mode mixing problem. Two critical issues concerned in the method, i.e., the noise estimation strategy and the number of EMD trials required for denoising are discussed. Furthermore, a comprehensive noise-assisted EMD method is proposed, which includes the proposed method and ensemble EMD (EEMD). Numerical simulations and experimental case studies on accelerometer data collected from an industrial shaving process are used to demonstrate and validate the proposed method. Results show that the proposed method can both detect impending faults and isolate multiple faults. Hence, the proposed method can act as a promising tool for mechanical fault detection.


2010 ◽  
Vol 02 (01) ◽  
pp. 25-37 ◽  
Author(s):  
PO-HSIANG TSUI ◽  
CHIEN-CHENG CHANG ◽  
NORDEN E. HUANG

The empirical mode decomposition (EMD) is the core of the Hilbert–Huang transform (HHT). In HHT, the EMD is responsible for decomposing a signal into intrinsic mode functions (IMFs) for calculating the instantaneous frequency and eventually the Hilbert spectrum. The EMD method as originally proposed, however, has an annoying mode mixing problem caused by the signal intermittency, making the physical interpretation of each IMF component unclear. To resolve this problem, the ensemble EMD (EEMD) was subsequently developed. Unlike the conventional EMD, the EEMD defines the true IMF components as the mean of an ensemble of trials, each consisting of the signal with added white noise of finite, not infinitesimal, amplitude. In this study, we further proposed an extension and alternative to EEMD designated as the noise-modulated EMD (NEMD). NEMD does not eliminate mode but intensify and amplify mixing by suppressing the small amplitude signal but the larger signals would be preserved without waveform deformation. Thus, NEMD may serve as a new adaptive threshold amplitude filtering. The principle, algorithm, simulations, and applications are presented in this paper. Some limitations and additional considerations of using the NEMD are also discussed.


Author(s):  
N. Rehman ◽  
D. P. Mandic

Despite empirical mode decomposition (EMD) becoming a de facto standard for time-frequency analysis of nonlinear and non-stationary signals, its multivariate extensions are only emerging; yet, they are a prerequisite for direct multichannel data analysis. An important step in this direction is the computation of the local mean, as the concept of local extrema is not well defined for multivariate signals. To this end, we propose to use real-valued projections along multiple directions on hyperspheres ( n -spheres) in order to calculate the envelopes and the local mean of multivariate signals, leading to multivariate extension of EMD. To generate a suitable set of direction vectors, unit hyperspheres ( n -spheres) are sampled based on both uniform angular sampling methods and quasi-Monte Carlo-based low-discrepancy sequences. The potential of the proposed algorithm to find common oscillatory modes within multivariate data is demonstrated by simulations performed on both hexavariate synthetic and real-world human motion signals.


Sign in / Sign up

Export Citation Format

Share Document