scholarly journals OHNOLOGS v2: A comprehensive resource for the genes retained from whole genome duplication in vertebrates

2019 ◽  
Author(s):  
Param Priya Singh ◽  
Hervé Isambert

ABSTRACTAll vertebrates including human have evolved from an ancestor that underwent two rounds of whole genome duplication (2R-WGD). In addition, teleost fish underwent an additional third round of genome duplication (3R-WGD). The genes retained from these genome duplications, so-called ohnologs, have been instrumental in the evolution of vertebrate complexity, developmental patterns and susceptibility to genetic diseases. However, the identification of vertebrate ohnologs has been challenging, due to lineage specific genome rearrangements since 2R- and 3R-WGD. We have previously identified vertebrate ohnologs using a novel synteny comparison across multiple genomes. Here, we refine and apply this approach on 27 vertebrate genomes to identify ohnologs from both 2R- and 3R-WGD, while taking into account the phylogenetically biased sampling of available species. We assemble vertebrate ohnolog pairs and families in an expanded OHNOLOGS v2 database, which also includes non-protein coding RNA genes. We find that teleost fish have retained most 2R-WGD ohnologs common to amniotes, which have also retained significantly more ohnologs from 3R-WGD, whereas a higher rate of 2R-WGD ohnolog loss is observed in sauropsids compared to mammals and fish. OHNOLOGS v2 should allow deeper evolutionary genomic analysis of the impact of WGD on vertebrates and can be freely accessed at http://ohnologs.curie.fr.

Author(s):  
Param Priya Singh ◽  
Hervé Isambert

Abstract All vertebrates including human have evolved from an ancestor that underwent two rounds of whole genome duplication (2R-WGD). In addition, teleost fish underwent an additional third round of genome duplication (3R-WGD). The genes retained from these genome duplications, so-called ohnologs, have been instrumental in the evolution of vertebrate complexity, development and susceptibility to genetic diseases. However, the identification of vertebrate ohnologs has been challenging, due to lineage specific genome rearrangements since 2R- and 3R-WGD. We previously identified vertebrate ohnologs using a novel synteny comparison across multiple genomes. Here, we refine and apply this approach on 27 vertebrate genomes to identify ohnologs from both 2R- and 3R-WGD, while taking into account the phylogenetically biased sampling of available species. We assemble vertebrate ohnolog pairs and families in an expanded OHNOLOGS v2 database. We find that teleost fish have retained more 2R-WGD ohnologs than mammals and sauropsids, and that these 2R-ohnologs have retained significantly more ohnologs from the subsequent 3R-WGD than genes without 2R-ohnologs. Interestingly, species with fewer extant genes, such as sauropsids, have retained similar or higher proportions of ohnologs. OHNOLOGS v2 should allow deeper evolutionary genomic analysis of the impact of WGD on vertebrates and can be freely accessed at http://ohnologs.curie.fr.


2015 ◽  
Vol 112 (48) ◽  
pp. 14918-14923 ◽  
Author(s):  
Jun Inoue ◽  
Yukuto Sato ◽  
Robert Sinclair ◽  
Katsumi Tsukamoto ◽  
Mutsumi Nishida

Whole-genome duplication (WGD) is believed to be a significant source of major evolutionary innovation. Redundant genes resulting from WGD are thought to be lost or acquire new functions. However, the rates of gene loss and thus temporal process of genome reshaping after WGD remain unclear. The WGD shared by all teleost fish, one-half of all jawed vertebrates, was more recent than the two ancient WGDs that occurred before the origin of jawed vertebrates, and thus lends itself to analysis of gene loss and genome reshaping. Using a newly developed orthology identification pipeline, we inferred the post–teleost-specific WGD evolutionary histories of 6,892 protein-coding genes from nine phylogenetically representative teleost genomes on a time-calibrated tree. We found that rapid gene loss did occur in the first 60 My, with a loss of more than 70–80% of duplicated genes, and produced similar genomic gene arrangements within teleosts in that relatively short time. Mathematical modeling suggests that rapid gene loss occurred mainly by events involving simultaneous loss of multiple genes. We found that the subsequent 250 My were characterized by slow and steady loss of individual genes. Our pipeline also identified about 1,100 shared single-copy genes that are inferred to have become singletons before the divergence of clupeocephalan teleosts. Therefore, our comparative genome analysis suggests that rapid gene loss just after the WGD reshaped teleost genomes before the major divergence, and provides a useful set of marker genes for future phylogenetic analysis.


2012 ◽  
Vol 30 (1) ◽  
pp. 140-153 ◽  
Author(s):  
Juan C. Opazo ◽  
G. Tyler Butts ◽  
Mariana F. Nery ◽  
Jay F. Storz ◽  
Federico G. Hoffmann

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Ao Li ◽  
Ai Liu ◽  
Xin Du ◽  
Jin-Yuan Chen ◽  
Mou Yin ◽  
...  

AbstractAlfalfa (Medicago sativa L.) is one of the most important and widely cultivated forage crops. It is commonly used as a vegetable and medicinal herb because of its excellent nutritional quality and significant economic value. Based on Illumina, Nanopore and Hi-C data, we assembled a chromosome-scale assembly of Medicago sativa spp. caerulea (voucher PI464715), the direct diploid progenitor of autotetraploid alfalfa. The assembled genome comprises 793.2 Mb of genomic sequence and 47,202 annotated protein-coding genes. The contig N50 length is 3.86 Mb. This genome is almost twofold larger and contains more annotated protein-coding genes than that of its close relative, Medicago truncatula (420 Mb and 44,623 genes). The more expanded gene families compared with those in M. truncatula and the expansion of repetitive elements rather than whole-genome duplication (i.e., the two species share the ancestral Papilionoideae whole-genome duplication event) may have contributed to the large genome size of M. sativa spp. caerulea. Comparative and evolutionary analyses revealed that M. sativa spp. caerulea diverged from M. truncatula ~5.2 million years ago, and the chromosomal fissions and fusions detected between the two genomes occurred during the divergence of the two species. In addition, we identified 489 resistance (R) genes and 82 and 85 candidate genes involved in the lignin and cellulose biosynthesis pathways, respectively. The near-complete and accurate diploid alfalfa reference genome obtained herein serves as an important complement to the recently assembled autotetraploid alfalfa genome and will provide valuable genomic resources for investigating the genomic architecture of autotetraploid alfalfa as well as for improving breeding strategies in alfalfa.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shijing Feng ◽  
Zhenshan Liu ◽  
Jian Cheng ◽  
Zihe Li ◽  
Lu Tian ◽  
...  

AbstractZanthoxylum bungeanum is an important spice and medicinal plant that is unique for its accumulation of abundant secondary metabolites, which create a characteristic aroma and tingling sensation in the mouth. Owing to the high proportion of repetitive sequences, high heterozygosity, and increased chromosome number of Z. bungeanum, the assembly of its chromosomal pseudomolecules is extremely challenging. Here, we present a genome sequence for Z. bungeanum, with a dramatically expanded size of 4.23 Gb, assembled into 68 chromosomes. This genome is approximately tenfold larger than that of its close relative Citrus sinensis. After the divergence of Zanthoxylum and Citrus, the lineage-specific whole-genome duplication event η-WGD approximately 26.8 million years ago (MYA) and the recent transposable element (TE) burst ~6.41 MYA account for the substantial genome expansion in Z. bungeanum. The independent Zanthoxylum-specific WGD event was followed by numerous fusion/fission events that shaped the genomic architecture. Integrative genomic and transcriptomic analyses suggested that prominent species-specific gene family expansions and changes in gene expression have shaped the biosynthesis of sanshools, terpenoids, and anthocyanins, which contribute to the special flavor and appearance of Z. bungeanum. In summary, the reference genome provides a valuable model for studying the impact of WGDs with recent TE activity on gene gain and loss and genome reconstruction and provides resources to accelerate Zanthoxylum improvement.


PLoS ONE ◽  
2017 ◽  
Vol 12 (7) ◽  
pp. e0180936 ◽  
Author(s):  
Emilien Voldoire ◽  
Frédéric Brunet ◽  
Magali Naville ◽  
Jean-Nicolas Volff ◽  
Delphine Galiana

PLoS Genetics ◽  
2009 ◽  
Vol 5 (7) ◽  
pp. e1000549 ◽  
Author(s):  
Li-Jun Ma ◽  
Ashraf S. Ibrahim ◽  
Christopher Skory ◽  
Manfred G. Grabherr ◽  
Gertraud Burger ◽  
...  

2020 ◽  
Vol 126 (3) ◽  
pp. 363-376
Author(s):  
Michelle L Gaynor ◽  
Simone Lim-Hing ◽  
Chase M Mason

Abstract Background and Aims Whole-genome duplication is known to influence ecological interactions and plant physiology; however, despite abundant case studies, much is still unknown about the typical impact of genome duplication on plant secondary metabolites (PSMs). In this study, we assessed the impact of polyploidy events on PSM characteristics in non-cultivated plants. Methods We conducted a systematic review and meta-analysis to compare composition and concentration of PSMs among closely related plant species or species complexes differing in ploidy level. Key Results We assessed 53 studies that focus on PSMs among multiple cytotypes, of which only 14 studies compared concentration quantitatively among cytotypes. We found that whole-genome duplication can have a significant effect on PSM concentration; however, these effects are highly inconsistent. Conclusion Overall, there was no consistent effect of whole-genome duplication on PSM concentrations or profiles.


Sign in / Sign up

Export Citation Format

Share Document