scholarly journals R-peak detector stress test with a new noisy ECG database reveals significant performance differences amongst popular detectors

2019 ◽  
Author(s):  
Bernd Porr ◽  
Luis Howell

AbstractThe R peak detection of an ECG signal is the basis of virtually any further processing and any error caused by this detection will propagate to further processing stages. Despite this, R peak detection algorithms and annotated databases often allow large error tolerances around 10%, masking any error introduced. In this paper we have revisited popular ECG R peak detection algorithms by applying sample precision error margins. For this purpose we have created a new open access ECG database with sample precision labelling of both standard Einthoven I, II, III leads and from a chest strap. 25 subjects were recorded and filmed while sitting, solving a maths test, operating a handbike, walking and jogging. Our results show that using an error margin with sample precision, common R peak detection algorithms perform much worse than previously reported. In addition, there are significant performance differences between detectors which can have detrimental effects on applications such as heartrate variability, thus leading to meaningless results.

2020 ◽  
Vol 7 (2) ◽  
pp. 53
Author(s):  
Ziti Fariha Mohd Apandi ◽  
Ryojun Ikeura ◽  
Soichiro Hayakawa ◽  
Shigeyoshi Tsutsumi

Heartbeat detection for ambulatory cardiac monitoring is more challenging as the level of noise and artefacts induced by daily-life activities are considerably higher than monitoring in a hospital setting. It is valuable to understand the relationship between the characteristics of electrocardiogram (ECG) noises and the beat detection performance in the cardiac monitoring system. For this purpose, three well-known algorithms for the beat detection process were re-implemented. The beat detection algorithms were validated using two types of ambulatory datasets, which were the ECG signal from the MIT-BIH Arrhythmia Database and the simulated noise-contaminated ECG signal with different intensities of baseline wander (BW), muscle artefact (MA) and electrode motion (EM) artefact from the MIT-BIH Noise Stress Test Database. The findings showed that signals contaminated with noise and artefacts decreased the potential of beat detection in ambulatory signal with the poorest performance noted for ECG signal affected by the EM artefacts. In conclusion, none of the algorithms was able to detect all QRS complexes without any false detection at the highest level of noise. The EM noise influenced the beat detection performance the most in comparison to the MA and BW noises that resulted in the highest number of misdetections and false detections.


Author(s):  
Akram Jaddoa Khalaf ◽  
Samir Jasim Mohammed

<span lang="EN-US">The ECG signal processing methods are tested and evaluated based on many databases. The most ECG database used for many researchers is the MIT-BIH arrhythmia database. The QRS-detection algorithms are essential for ECG analyses to detect the beats for the ECG signal. There is no standard number of beats for this database that are used from numerous researches. Different beat numbers are calculated for the researchers depending on the difference in understanding the annotation file. In this paper, the beat numbers for existing methods are studied and compared to find the correct beat number that should be used. We propose a simple function to standardize the beats number for any ECG PhysioNet database to improve the waveform database toolbox (WFDB) for the MATLAB program. This function is based on the annotation's description from the databases and can be added to the Toolbox. The function is removed the non-beats annotation without any errors. The results show a high percentage of 71% from the reviewed methods used an incorrect number of beats for this database.</span>


Author(s):  
Alka Gautam ◽  
Hoon-Jae Lee ◽  
Wan-Young Chung

In this study, a new algorithm is proposed—Asynchronous Averaging and Filtering (AAF) for ECG signal de-noising. R-peaks are detected with another proposed algorithm—Minimum Slot and Maximum Point selecting method (MSMP). AAF algorithm reduces random noise (major component of EMG noise) from ECG signal and provides comparatively good results for baseline wander noise cancellation. Signal to noise ratio (SNR) improves in filtered ECG signal, while signal shape remains undistorted. The authors conclude that R-peak detection with MSMP method gives comparable results from existing algorithm like Pan-Tomkins algorithm. AAF algorithm is advantageous over adaptation algorithms like Wiener and LMS algorithm. Overall performance of proposed algorithms is comparatively good.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Qin Qin ◽  
Jianqing Li ◽  
Yinggao Yue ◽  
Chengyu Liu

R-peak detection is crucial in electrocardiogram (ECG) signal analysis. This study proposed an adaptive and time-efficient R-peak detection algorithm for ECG processing. First, wavelet multiresolution analysis was applied to enhance the ECG signal representation. Then, ECG was mirrored to convert large negative R-peaks to positive ones. After that, local maximums were calculated by the first-order forward differential approach and were truncated by the amplitude and time interval thresholds to locate the R-peaks. The algorithm performances, including detection accuracy and time consumption, were tested on the MIT-BIH arrhythmia database and the QT database. Experimental results showed that the proposed algorithm achieved mean sensitivity of 99.39%, positive predictivity of 99.49%, and accuracy of 98.89% on the MIT-BIH arrhythmia database and 99.83%, 99.90%, and 99.73%, respectively, on the QT database. By processing one ECG record, the mean time consumptions were 0.872 s and 0.763 s for the MIT-BIH arrhythmia database and QT database, respectively, yielding 30.6% and 32.9% of time reduction compared to the traditional Pan-Tompkins method.


Author(s):  
Neenu Jose ◽  
◽  
Nandakumar Paramparambath

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yatao Zhang ◽  
Shoushui Wei ◽  
Yutao Long ◽  
Chengyu Liu

This study explored the performance of multiscale entropy (MSE) for the assessment of mobile ECG signal quality, aiming to provide a reasonable application guideline. Firstly, the MSE for the typical noises, that is, high frequency (HF) noise, low frequency (LF) noise, and power-line (PL) noise, was analyzed. The sensitivity of MSE to the signal to noise ratio (SNR) of the synthetic artificial ECG plus different noises was further investigated. The results showed that the MSE values could reflect content level of various noises contained in the ECG signals. For the synthetic ECG plus LF noise, the MSE was sensitive to SNR within higher range of scale factor. However, for the synthetic ECG plus HF noise, the MSE was sensitive to SNR within lower range of scale factor. Thus, a recommended scale factor range within 5 to 10 was given. Finally, the results were verified on the real ECG signals, which were derived from MIT-BIH Arrhythmia Database and Noise Stress Test Database. In all, MSE could effectively assess the noise level on the real ECG signals, and this study provided a valuable reference for applying MSE method to the practical signal quality assessment of mobile ECG.


Sign in / Sign up

Export Citation Format

Share Document