scholarly journals Improved chemistry restraints for crystallographic refinement by integrating the Amber force field into Phenix

2019 ◽  
Author(s):  
Nigel W. Moriarty ◽  
Pawel A. Janowski ◽  
Jason M. Swails ◽  
Hai Nguyen ◽  
Jane S. Richardson ◽  
...  

AbstractThe refinement of biomolecular crystallographic models relies on geometric restraints to help address the paucity of experimental data typical in these experiments. Limitations in these restraints can degrade the quality of the resulting atomic models. Here we present an integration of the full all-atom Amber molecular dynamics force field into Phenix crystallographic refinement, which enables a more complete modeling of biomolecular chemistry. The advantages of the force field include a carefully derived set of torsion angle potentials, an extensive and flexible set of atom types, Lennard-Jones treatment of non-bonded interactions and a full treatment of crystalline electrostatics. The new combined method was tested against conventional geometry restraints for over twenty-two thousand protein structures. Structures refined with the new method show substantially improved model quality. On average, Ramachandran and rotamer scores are somewhat better; clash scores and MolProbity scores are significantly improved; and the modelling of electrostatics leads to structures that exhibit more, and more correct, hydrogen bonds than those refined with traditional geometry restraints. We find in general that model improvements are greatest at lower resolutions, prompting plans to add the Amber target function to real-space refinement for use in electron cryo-microscopy. This work opens the door to the future development of more advanced applications such as Amber-based ensemble refinement, quantum mechanical representation of active sites and improved geometric restraints for simulated annealing.IMPORTANTthis document contains embedded data - to preserve data integrity, please ensure where possible that the IUCr Word tools (available from http://journals.iucr.org/services/docxtemplate/) are installed when editing this document.SynopsisThe full Amber force field has been integrated into Phenix as an alternative refinement target. With a slight loss in speed, it achieves improved stereochemistry, fewer steric clashes and better hydrogen bonds.

2020 ◽  
Vol 76 (1) ◽  
pp. 51-62 ◽  
Author(s):  
Nigel W. Moriarty ◽  
Pawel A. Janowski ◽  
Jason M. Swails ◽  
Hai Nguyen ◽  
Jane S. Richardson ◽  
...  

The refinement of biomolecular crystallographic models relies on geometric restraints to help to address the paucity of experimental data typical in these experiments. Limitations in these restraints can degrade the quality of the resulting atomic models. Here, an integration of the full all-atom Amber molecular-dynamics force field into Phenix crystallographic refinement is presented, which enables more complete modeling of biomolecular chemistry. The advantages of the force field include a carefully derived set of torsion-angle potentials, an extensive and flexible set of atom types, Lennard–Jones treatment of nonbonded interactions and a full treatment of crystalline electrostatics. The new combined method was tested against conventional geometry restraints for over 22 000 protein structures. Structures refined with the new method show substantially improved model quality. On average, Ramachandran and rotamer scores are somewhat better, clashscores and MolProbity scores are significantly improved, and the modeling of electrostatics leads to structures that exhibit more, and more correct, hydrogen bonds than those refined using traditional geometry restraints. In general it is found that model improvements are greatest at lower resolutions, prompting plans to add the Amber target function to real-space refinement for use in electron cryo-microscopy. This work opens the door to the future development of more advanced applications such as Amber-based ensemble refinement, quantum-mechanical representation of active sites and improved geometric restraints for simulated annealing.


2018 ◽  
Author(s):  
Allan J. R. Ferrari ◽  
Fabio C. Gozzo ◽  
Leandro Martinez

<div><p>Chemical cross-linking/Mass Spectrometry (XLMS) is an experimental method to obtain distance constraints between amino acid residues, which can be applied to structural modeling of tertiary and quaternary biomolecular structures. These constraints provide, in principle, only upper limits to the distance between amino acid residues along the surface of the biomolecule. In practice, attempts to use of XLMS constraints for tertiary protein structure determination have not been widely successful. This indicates the need of specifically designed strategies for the representation of these constraints within modeling algorithms. Here, a force-field designed to represent XLMS-derived constraints is proposed. The potential energy functions are obtained by computing, in the database of known protein structures, the probability of satisfaction of a topological cross-linking distance as a function of the Euclidean distance between amino acid residues. The force-field can be easily incorporated into current modeling methods and software. In this work, the force-field was implemented within the Rosetta ab initio relax protocol. We show a significant improvement in the quality of the models obtained relative to current strategies for constraint representation. This force-field contributes to the long-desired goal of obtaining the tertiary structures of proteins using XLMS data. Force-field parameters and usage instructions are freely available at http://m3g.iqm.unicamp.br/topolink/xlff <br></p></div><p></p><p></p>


2012 ◽  
Vol 8 (3) ◽  
pp. 948-958 ◽  
Author(s):  
Arnau Cordomí ◽  
Gianluigi Caltabiano ◽  
Leonardo Pardo

2016 ◽  
Vol 56 (4) ◽  
pp. 811-818 ◽  
Author(s):  
Suqing Zheng ◽  
Qing Tang ◽  
Jian He ◽  
Shiyu Du ◽  
Shaofang Xu ◽  
...  

2018 ◽  
Author(s):  
Sebastian Daberdaku

Protein pockets and cavities usually coincide with the active sites of biological processes, and their identification is significant since it constitutes an important step for structure-based drug design and protein-ligand docking applications. This paper presents a novel purely geometric algorithm for the detection of ligand binding protein pockets and cavities based on the Euclidean Distance Transform (EDT). The EDT can be used to compute the Solvent-Excluded surface for any given probe sphere radius value at high resolutions and in a timely manner. The algorithm is adaptive to the specific candidate ligand: it computes two voxelised protein surfaces using two different probe sphere radii depending on the shape of the candidate ligand. The pocket regions consist of the voxels located between the two surfaces, which exhibit a certain minimum depth value from the outer surface. The distance map values computed by the EDT algorithm during the second surface computation can be used to elegantly determine the depth of each candidate pocket and to rank them accordingly. Cavities on the other hand, are identified by scanning the inside of the protein for voids. The algorithm determines and outputs the best k candidate pockets and cavities, i.e. the ones that are more likely to bind to the given ligand. The method was applied to a representative set of protein-ligand complexes and their corresponding unbound protein structures to evaluate its ligand binding site prediction capabilities, and was shown to outperform most of the previously developed purely geometric pocket and cavity search methods.


Soft Matter ◽  
2021 ◽  
Author(s):  
Rakesh K Vaiwala ◽  
Ganapathy Ayappa

A coarse-grained force field for molecular dynamics simulations of native structures of proteins in a dissipative particle dynamics (DPD) framework is developed. The parameters for bonded interactions are derived by...


Sign in / Sign up

Export Citation Format

Share Document