scholarly journals A simple CPG-based model to generate human hip moment pattern in walking by generating stiffness and equilibrium point trajectories

2019 ◽  
Author(s):  
Alireza Bahramian ◽  
Farzad Towhidkhah ◽  
Sajad Jafari

AbstractEquilibrium point hypothesis (its developed version named as referent control theory) presents a theory about how the central nerves system (CNS) generates human movements. On the other hand, it has been shown that nerves circuits known as central pattern generators (CPG) likely produce motor commands to the muscles in rhythmic motions. In the present study, we designed a bio-inspired walking model, by coupling double pendulum to CPGs that produces equilibrium and stiffness trajectories as reciprocal and co-activation commands. As a basic model, it is has been shown that this model can regenerate pattern of a hip moment in the swing phase by high correlation (ρ = 0.970) with experimental data. Moreover, it has been reported that a global electromyography (EMG) minima occurs in the mid-swing phase when the hip is more flexed in comparison with the other leg. Our model showed that equilibrium and actual hip angle trajectories match each other in mid-swing, similar to the mentioned posture, that is consistent with previous findings. Such a model can be used in active exoskeletons and prosthesis to make proper active stiffness and torque.

Author(s):  
Paul S. Katz ◽  
Akira Sakurai

This article compares the neural basis for swimming in sea slugs belonging to the Nudipleura clade of molluscs. There are two primary forms of swimming. One, dorsal/ventral (DV) body flexions, is typified by Tritonia diomedea and Pleurobranchaea californica. Although Tritonia and Pleurobranchaea evolved DV swimming independently, there are at least two homologous neurons in the central pattern generators (CPGs) underlying DV swimming in these species. Furthermore, both species have serotonergic neuromodulation of synaptic strength intrinsic to their CPGs. The other form of swimming is with alternating left/right (LR) body flexions. Melibe and Dendronotus belong to a clade of species that all swim with LR body flexions. Although the swimming behavior is homologous, their swim CPGs differ in both cellular composition and in the details of the neural mechanisms. Thus, similar behaviors have independently evolved through parallel use of homologous neurons, and homologous behaviors can be produced by different neural mechanisms.


2011 ◽  
Vol 106 (5) ◽  
pp. 2201-2215 ◽  
Author(s):  
Angela Wenning ◽  
Brian J. Norris ◽  
Anca Doloc-Mihu ◽  
Ronald L. Calabrese

Central pattern generators (CPGs) pace and pattern many rhythmic activities. We have uncovered a new module in the heartbeat CPG of leeches that creates a regional difference in this segmentally distributed motor pattern. The core CPG consists of seven identified pairs and one unidentified pair of heart interneurons of which 5 pairs are premotor and inhibit 16 pairs of heart motor neurons. The heartbeat CPG produces a side-to-side asymmetric pattern of activity of the premotor heart interneurons corresponding to an asymmetric fictive motor pattern and an asymmetric constriction pattern of the hearts with regular switches between the two sides. The premotor pattern progresses from rear to front on one side and nearly synchronously on the other; the motor pattern shows corresponding intersegmental coordination, but only from segment 15 forward. In the rearmost segments the fictive motor pattern and the constriction pattern progress from front to rear on both sides and converge in phase. Modeling studies suggested that the known inhibitory inputs to the rearmost heart motor neurons were insufficient to account for this activity. We therefore reexamined the constriction pattern of intact leeches. We also identified electrophysiologically two additional pairs of heart interneurons in the rear. These new heart interneurons make inhibitory connections with the rear heart motor neurons, are coordinated with the core heartbeat CPG, and are dye-coupled to their contralateral homologs. Their strong inhibitory connections with the rearmost heart motor neurons and the small side-to-side phase difference of their bursting contribute to the different motor and beating pattern observed in the animal's rear.


2003 ◽  
Vol 13 (06) ◽  
pp. 469-478 ◽  
Author(s):  
PAOLO ARENA ◽  
LUIGI FORTUNA ◽  
MATTIA FRASCA ◽  
LUCA PATANÉ

Central Pattern Generators (CPGs) are a suitable paradigm to solve the problem of locomotion control in walking robots. CPGs are able to generate feed-forward signals to achieve a proper coordination among the robot legs. In literature they are often modelled as networks of coupled nonlinear systems. However the topic of feedback in these systems is rarely addressed. On the other hand feedback is essential for locomotion. In this paper the CPG for a hexapod robot is implemented through Cellular Neural Networks (CNNs). Feedback is included in the CPG controller by exploiting the dynamic properties of the CPG motor-neurons, such as synchronization issue and local bifurcations. These universal paradigms provide the essential issues to include sensory feedback in CPG architectures based on coupled nonlinear systems. Experiments on a dynamic model of a hexapod robot are presented to validate the approach introduced.


2017 ◽  
Vol 27 (2) ◽  
pp. 40
Author(s):  
Hua WU ◽  
Zaihua RU ◽  
Congying XU ◽  
Xudong GU ◽  
Jianming FU

Author(s):  
Astrid A. Prinz

This chapter begins by defining central pattern generators (CPGs) and proceeds to focus on one of their core components, the timing circuit. After arguing why invertebrate CPGs are particularly useful for the study of neuronal circuit operation in general, the bulk of the chapter then describes basic mechanisms of CPG operation at the cellular, synaptic, and network levels, and how different CPGs combine these mechanisms in various ways. Finally, the chapter takes a semihistorical perspective to discuss whether or not the study of invertebrate CPGs has seen its prime and what it has contributed—and may continue to offer—to a wider understanding of neuronal circuits in general.


2001 ◽  
Vol 42 (4) ◽  
pp. 291-326 ◽  
Author(s):  
Pietro-Luciano Buono ◽  
Martin Golubitsky

2004 ◽  
Vol 58-60 ◽  
pp. 535-540 ◽  
Author(s):  
Roberto Latorre ◽  
Francisco de Borja Rodrı́guez ◽  
Pablo Varona

Sign in / Sign up

Export Citation Format

Share Document