scholarly journals A study of parietal-motor connectivity by intraoperative dual cortical stimulation

2019 ◽  
Author(s):  
Luigi Cattaneo ◽  
Davide Giampiccolo ◽  
Pietro Meneghelli ◽  
Vincenzo Tramontano ◽  
Francesco Sala

Abstractthe function of the primate’s posterior parietal cortex in sensorimotor transformations is well-established, though in humans its complexity is still challenging. Well-established models indicate that the posterior parietal cortex influences motor output indirectly, by means of connections to the premotor cortex, which in turn is directly connected to the motor cortex. The possibility that the posterior parietal cortex could be at the origin of direct afferents to M1 has been suggested in humans but has never been confirmed directly. In the present work we assessed during intraoperative monitoring of the corticospinal tract in brain tumour patients the existence of short-latency effects of parietal stimulation on corticospinal excitability to the upper limb. We identified several foci within the inferior parietal lobule that drove short-latency influences on cortical motor output. Active foci were distributed along the postcentral gyrus and clustered around the anterior intraparietal area and around the parietal operculum. For the first time in humans, the present data show direct evidence in favour of a distributed system of connections from the posterior parietal cortex to the ipsilateral primary motor cortex.

2012 ◽  
Vol 107 (11) ◽  
pp. 3190-3199 ◽  
Author(s):  
Anke Karabanov ◽  
Seung-Hyun Jin ◽  
Atte Joutsen ◽  
Brach Poston ◽  
Joshua Aizen ◽  
...  

Interplay between posterior parietal cortex (PPC) and ipsilateral primary motor cortex (M1) is crucial during execution of movements. The purpose of the study was to determine whether functional PPC–M1 connectivity in humans can be modulated by sensorimotor training. Seventeen participants performed a sensorimotor training task that involved tapping the index finger in synchrony to a rhythmic sequence. To explore differences in training modality, one group ( n = 8) learned by visual and the other ( n = 9) by auditory stimuli. Transcranial magnetic stimulation (TMS) was used to assess PPC–M1 connectivity before and after training, whereas electroencephalography (EEG) was used to assess PPC–M1 connectivity during training. Facilitation from PPC to M1 was quantified using paired-pulse TMS at conditioning-test intervals of 2, 4, 6, and 8 ms by measuring motor-evoked potentials (MEPs). TMS was applied at baseline and at four time points (0, 30, 60, and 180 min) after training. For EEG, task-related power and coherence were calculated for early and late training phases. The conditioned MEP was facilitated at a 2-ms conditioning-test interval before training. However, facilitation was abolished immediately following training, but returned to baseline at subsequent time points. Regional EEG activity and interregional connectivity between PPC and M1 showed an initial increase during early training followed by a significant decrease in the late phases. The findings indicate that parietal–motor interactions are activated during early sensorimotor training when sensory information has to be integrated into a coherent movement plan. Once the sequence is encoded and movements become automatized, PPC–M1 connectivity returns to baseline.


2005 ◽  
Vol 17 (1) ◽  
pp. 97-112 ◽  
Author(s):  
Floris P. de Lange ◽  
Peter Hagoort ◽  
Ivan Toni

We have used implicit motor imagery to investigate the neural correlates of motor planning independently from actual movements. Subjects were presented with drawings of left or right hands and asked to judge the hand laterality, regardless of the stimulus rotation from its upright orientation. We paired this task with a visual imagery control task, in which subjects were presented with typographical characters and asked to report whether they saw a canonical letter or its mirror image, regardless of its rotation. We measured neurovascular activity with fast event-related fMRI, distinguishing responses parametrically related to motor imagery from responses evoked by visual imagery and other task-related phenomena. By quantifying behavioral and neurovascular correlates of imagery on a trial-by-trial basis, we could discriminate between stimulus-related, mental rotation-related, and response-related neural activity. We found that specific portions of the posterior parietal and precentral cortex increased their activity as a function of mental rotation only during the motor imagery task. Within these regions, the parietal cortex was visually responsive, whereas the dorsal precentral cortex was not. Response- but not rotation-related activity was found around the left central sulcus (putative primary motor cortex) during both imagery tasks. Our study provides novel evidence on the topography and content of movement representations in the human brain. During intended action, the posterior parietal cortex combines somatosensory and visuomotor information, whereas the dorsal premotor cortex generates the actual motor plan, and the primary motor cortex deals with movement execution. We discuss the relevance of these results in the context of current models of action planning.


2011 ◽  
Vol 122 ◽  
pp. S198
Author(s):  
A. Karabanov ◽  
S.-H. Jin ◽  
A. Joutsen ◽  
P. Brach ◽  
J. Aizen ◽  
...  

2021 ◽  
Vol 11 (10) ◽  
pp. 1357
Author(s):  
Rossella Breveglieri ◽  
Sara Borgomaneri ◽  
Matteo Filippini ◽  
Marina De Vitis ◽  
Alessia Tessari ◽  
...  

The medial posterior parietal cortex (PPC) is involved in the complex processes of visuomotor integration. Its connections to the dorsal premotor cortex, which in turn is connected to the primary motor cortex (M1), complete the fronto-parietal network that supports important cognitive functions in the planning and execution of goal-oriented movements. In this study, we wanted to investigate the time-course of the functional connectivity at rest between the medial PPC and the M1 using dual-site transcranial magnetic stimulation in healthy humans. We stimulated the left M1 using a suprathreshold test stimulus to elicit motor-evoked potentials in the hand, and a subthreshold conditioning stimulus was applied over the left medial PPC at different inter-stimulus intervals (ISIs). The conditioning stimulus affected the M1 excitability depending on the ISI, with inhibition at longer ISIs (12 and 15 ms). We suggest that these modulations may reflect the activation of different parieto-frontal pathways, with long latency inhibitions likely recruiting polisynaptic pathways, presumably through anterolateral PPC.


2011 ◽  
Vol 33 (2) ◽  
pp. 419-430 ◽  
Author(s):  
Sergiu Groppa ◽  
Boris H. Schlaak ◽  
Alexander Münchau ◽  
Nicole Werner-Petroll ◽  
Janin Dünnweber ◽  
...  

2009 ◽  
Vol 105 (7) ◽  
pp. 07B321 ◽  
Author(s):  
Masakuni Iwahashi ◽  
Yohei Koyama ◽  
Akira Hyodo ◽  
Takehito Hayami ◽  
Shoogo Ueno ◽  
...  

2007 ◽  
Vol 97 (1) ◽  
pp. 387-406 ◽  
Author(s):  
Esther P. Gardner ◽  
K. Srinivasa Babu ◽  
Shari D. Reitzen ◽  
Soumya Ghosh ◽  
Alice S. Brown ◽  
...  

Hand manipulation neurons in areas 5 and 7b/anterior intraparietal area (AIP) of posterior parietal cortex were analyzed in three macaque monkeys during a trained prehension task. Digital video recordings of hand kinematics synchronized to neuronal spike trains were used to correlate firing rates of 128 neurons with hand actions as the animals grasped and lifted rectangular and round objects. We distinguished seven task stages: approach, contact, grasp, lift, hold, lower, and relax. Posterior parietal cortex (PPC) firing rates were highest during object acquisition; 88% of task-related area 5 neurons and 77% in AIP/7b fired maximally during stages 1, 2, or 3. Firing rates rose 200–500 ms before contact, peaked at contact, and declined after grasp was secured. 83% of area 5 neurons and 72% in AIP/7b showed significant increases in mean rates during approach as the fingers were preshaped for grasp. Somatosensory signals at contact provided feedback concerning the accuracy of reach and helped guide the hand to grasp sites. In error trials, tactile information was used to abort grasp, or to initiate corrective actions to achieve task goals. Firing rates declined as lift began. 41% of area 5 neurons and 38% in AIP/7b were inhibited during holding, and returned to baseline when grasp was relaxed. Anatomical connections suggest that area 5 provides somesthetic information to circuits linking AIP/7b to frontal motor areas involved in grasping. Area 5 may also participate in sensorimotor transformations coordinating reach and grasp behaviors and provide on-line feedback needed for goal-directed hand movements.


Sign in / Sign up

Export Citation Format

Share Document