scholarly journals Identification of orthotropic material parameters for acute, necrotic, fibrotic and remodelling myocardial infarcts in the rat

2019 ◽  
Author(s):  
Mazin S. Sirry ◽  
Laura Dubuis ◽  
Neil H. Davies ◽  
Jun Liao ◽  
Thomas Franz

AbstractFinite element (FE) models have been effectively utilized in studying biomechanical aspects of myocardial infarction (MI). Although the rat is a widely used animal model for MI, there is a lack of material parameters based on anisotropic constitutive models for rat myocardial infarcts in literature. This study aimed at employing inverse methods to identify the parameters of an orthotropic constitutive model for myocardial infarcts in the acute, necrotic, fibrotic and remodelling phases utilizing the biaxial mechanical data developed in a previous study. FE model was developed mimicking the setup of the biaxial tensile experiment. The orthotropic case of the generalized Fung constitutive model was utilized to model the material properties of the infarct. The parameters of Fung model were optimized so that the FE solution best fitted the biaxial experimental stress-strain data. A genetic algorithm was used to minimize the objective function. Fung orthotropic material parameters for different infarct stages were identified. The FE model predictions best approximated the experimental data of the 28 days infarct stage with 3.0% mean absolute percentage error. The worst approximation was for the 7 days stage with 3.6% error. This study demonstrated that the experimental biaxial stress-strain data of healing rat infarcts could be successfully approximated using inverse FE methods and genetic algorithms. The material parameters identified in this study will provide an essential platform for FE investigations of biomechanical aspects of MI and the development of therapies.

2000 ◽  
Author(s):  
K. M. Zhao ◽  
J. K. Lee

Abstract The main objective of this paper is to generate cyclic stress-strain curves for sheet metals so that the springback can be simulated accurately. Material parameters are identified by an inverse method within a selected constitutive model that represents the hardening behavior of materials subjected to a cyclic loading. Three-point bending tests are conducted on sheet steels (mild steel and high strength steel). Punch stroke, punch load, bending strain and bending angle are measured directly during the tests. Bending moments are then computed from these measured data. Bending moments are also calculated based on a constitutive model. Normal anisotropy and nonlinear isotropic/kinematic hardening are considered. Material parameters are identified by minimizing the normalized error between two bending moments. Micro genetic algorithm is used in the optimization procedure. Stress-strain curves are generated with the material parameters found in this way, which can be used with other plastic models.


2017 ◽  
Vol 139 (9) ◽  
Author(s):  
Maureen L. Dreher ◽  
Srinidhi Nagaraja ◽  
Jorgen Bergstrom ◽  
Danika Hayman

Computational modeling is critical to medical device development and has grown in its utility for predicting device performance. Additionally, there is an increasing trend to use absorbable polymers for the manufacturing of medical devices. However, computational modeling of absorbable devices is hampered by a lack of appropriate constitutive models that capture their viscoelasticity and postyield behavior. The objective of this study was to develop a constitutive model that incorporated viscoplasticity for a common medical absorbable polymer. Microtensile bars of poly(L-lactide) (PLLA) were studied experimentally to evaluate their monotonic, cyclic, unloading, and relaxation behavior as well as rate dependencies under physiological conditions. The data were then fit to a viscoplastic flow evolution network (FEN) constitutive model. PLLA exhibited rate-dependent stress–strain behavior with significant postyield softening and stress relaxation. The FEN model was able to capture these relevant mechanical behaviors well with high accuracy. In addition, the suitability of the FEN model for predicting the stress–strain behavior of PLLA medical devices was investigated using finite element (FE) simulations of nonstandard geometries. The nonstandard geometries chosen were representative of generic PLLA cardiovascular stent subunits. These finite element simulations demonstrated that modeling PLLA using the FEN constitutive relationship accurately reproduced the specimen’s force–displacement curve, and therefore, is a suitable relationship to use when simulating stress distribution in PLLA medical devices. This study demonstrates the utility of an advanced constitutive model that incorporates viscoplasticity for simulating PLLA mechanical behavior.


Author(s):  
James P. DeMarco ◽  
Erik A. Hogan ◽  
Calvin M. Stewart ◽  
Ali P. Gordon

Constitutive modeling has proven useful in providing accurate predictions of material response in components subjected to a variety of operating conditions; however, the high number of experiments necessary to determine appropriate constants for a model can be prohibitive, especially for more expensive materials. Generally, up to twenty experiments simulating a range of conditions are needed to identify the material parameters for a model. In this paper, an automated process for optimizing the material constants of the Miller constitutive model for uniaxial modeling is introduced. The use of more complex stress, strain, and temperature histories than are traditionally used allows for the effects of all material parameters to be captured using significantly fewer tests. A graphical user interface known as uSHARP was created to implement the resulting method, which determines the material constants of a viscoplastic model using a minimum amount of experimental data. By carrying out successive finite element simulations and comparing the results to simulated experimental test data, both with and without random noise, the material constants were determined from 75% fewer experiments. The optimization method introduced here reduces the cost and time necessary to determine constitutive model constants through experimentation. Thus it allows for a more widespread application of advanced constitutive models in industry and for better life prediction modeling of critical components in high-temperature applications.


Author(s):  
Digendranath Swain ◽  
S Karthigai Selvan ◽  
Binu P Thomas ◽  
Ahmedul K Asraff ◽  
Jeby Philip

Ramberg-Osgood (R-O) type stress-strain models are commonly employed during elasto-plastic analysis of metals. Recently, 2-stage and 3-stage R-O variant models have been proposed to replicate stress-strain behavior under large plastic deformation. The complexity of these models increases with the addition of each stage. Moreover, these models have considered deformation till necking only. In this paper, a simplistic multi-stage constitutive model is proposed to capture the strain-hardening non-linearity shown by metals including its post necking behavior. The constitutive parameters of the proposed stress-strain model can be determined using only elastic modulus and yield strength. 3-D digital image correlation was used as an experimental tool for measuring full-field strains on the specimens, which were subsequently utilized to obtain the material parameters. Our constitutive model is demonstrated with an aerospace-grade stainless steel AISI 321 wherein deformation response averaged over the gauge length (GL) and at a local necking zone are compared. The resulting averaged and local material parameters obtained from the proposed model provide interesting insights into the pre and post necking deformation behavior. Our constitutive model would be useful for characterizing highly ductile metals which may or may not depict non-linear strain hardening behavior including their post necking deformations.


2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Keyvan Amini Khoiy ◽  
Anup D. Pant ◽  
Rouzbeh Amini

The tricuspid valve is a one-way valve on the pulmonary side of the heart, which prevents backflow of blood during ventricular contractions. Development of computational models of the tricuspid valve is important both in understanding the normal valvular function and in the development/improvement of surgical procedures and medical devices. A key step in the development of such models is quantification of the mechanical properties of the tricuspid valve leaflets. In this study, after examining previously measured five-loading-protocol biaxial stress–strain response of porcine tricuspid valves, a phenomenological constitutive framework was chosen to represent this response. The material constants were quantified for all three leaflets, which were shown to be highly anisotropic with average anisotropy indices of less than 0.5 (an anisotropy index value of 1 indicates a perfectly isotropic response, whereas a smaller value of the anisotropy index indicates an anisotropic response). To obtain mean values of material constants, stress–strain responses of the leaflet samples were averaged and then fitted to the constitutive model (average R2 over 0.9). Since the sample thicknesses were not hugely different, averaging the data using the same tension levels and stress levels produced similar average material constants for each leaflet.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1086
Author(s):  
Rongchuang Chen ◽  
Shiyang Zhang ◽  
Min Wang ◽  
Xianlong Liu ◽  
Fei Feng

Constitutive models that reflect the microstructure evolution is of great significance to accurately predict the forming process of forging. Through thermal tension of 300M steel under various temperatures (950~1150 °C) and strain rates (0.01~10 s−1), the material flow and microstructure evolutions were investigated. In order to describe both the exponential hardening phenomenon at a higher temperature, and the softening phenomenon due to recrystallization at a lower temperature, a constitutive model considering microstructure evolution was proposed based on the Kocks–Mecking model. It was found that considering the stress-strain curve to be exponential in the work-hardening stage could improve the constitutive model prediction precision. The average error was 2.43% (3.59 MPa), showing that the proposed model was more precise than the modified Arrhenius model and the Kocks–Mecking model. The models to describe recrystallization kinetics and average grain size were also constructed. This work enabled the Kocks–Mecking model to predict stress-strain curves with a higher accuracy, and broadened the applicable range of the Kocks–Mecking model.


Author(s):  
Deshun Yin ◽  
Hao Wu ◽  
Chen Cheng ◽  
YangQuan Chen

Fractional calculus has been successfully applied to characterize the rheological property of viscoelastic materials, however, geomaterials were seldom involved in fractional order constitutive models (FOCM), and the issue of first loading and then unloading is rarely discussed through fractional calculus. It is considered that all materials are arranged in a queue and ideal solid and Newtonian fluid are located at both ends of the queue in FOCM. On the basis of FOCM, stress-strain relation under the condition of first loading and then unloading, besides creep, stress-relaxation and loading of constant strain rate are obtained. The stress-strain relation is utilized to fit triaxial test results of geomaterials under the corresponding conditions. The comparison between the test and fitting results reveals that FOCM can reasonably describe the stress-strain, stress-time or strain-time characteristics of geomaterials, which shows that fractional calculus is a good tool to constitutive model research of geomaterials.


Metals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 64 ◽  
Author(s):  
Li ◽  
Duan ◽  
Yao ◽  
Guan ◽  
Yang

Hot compression tests were carried out on a Gleeble-3800 thermal mechanical simulator in the temperature range from 700 to 900 °C and strain rate range from 0.005 to 10 s−1 to investigate the hot deformation behavior of B1500HS high-strength steel. Softening mechanisms of B1500HS high-strength steel under different deformation conditions were analyzed according to the characteristics of flow stress–strain curves. By analyzing and processing the experimental data, the values of steady flow stress, saturated stress, dynamic recovery (DRV) softening coefficient, and other factors were solved and these parameters were expressed as functions of Zener–Hollomon factors. Based on the dislocation density theory and the kinetic model of dynamic recrystallization (DRX), constitutive models corresponding to different softening mechanisms were established. The flow stress–strain curves of B1500HS predicted by a constitutive model are in good agreement with the experimental results and the correlation coefficient is . The comparison results indicate that the constitutive models can accurately reflect the deformation behavior of B1500HS high-strength steel under different conditions.


Sign in / Sign up

Export Citation Format

Share Document