scholarly journals Light-Activated Nanoscale Gas Vesicles Selectively Kill Tumor Cells

2019 ◽  
Author(s):  
Ann Fernando ◽  
Jean Gariépy

AbstractProtein-based nanobubbles such as halophilic archaeabacterial gas vesicles (GVs) represent a new class of stable, homogeneous nanoparticles with acoustic properties that allow them to be visualized by ultrasound (US) waves. To design GVs as theranostic agents, we modified them to respond to light, with a view to locally generate reactive oxygen species that can kill cancer cells. Specifically, up to 60,000 photoreactive chlorin e6 (Ce6) molecules were chemically attached to lysine ε-amino groups present on the surface of each purified Halobacterium sp. NRC-1 GV. The resulting fluorescent NRC-1 Ce6-GVs have dimensions comparable to that of native GVs and were efficiently taken up by human breast [MCF-7] and human hypopharyngeal [FaDu-GFP] cancer cells as monitored by confocal microscopy and flow cytometry. When exposed to light, internalized Ce6-GVs were 200-fold more effective on a molar basis than free Ce6 at killing cells. These results demonstrate the potential of Ce6-GVs as novel and promising nanomaterials for image-guided photodynamic therapy.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ann Fernando ◽  
Jean Gariépy

Abstract Protein-based nanobubbles such as halophilic archaeabacterial gas vesicles (GVs) represent a new class of stable, homogeneous nanoparticles with acoustic properties that allow them to be visualized by ultrasound (US) waves. To design GVs as theranostic agents, we modified them to respond to light, with a view to locally generate reactive oxygen species that can kill cancer cells. Specifically, up to 60,000 photoreactive chlorin e6 (Ce6) molecules were chemically attached to lysine ε-amino groups present on the surface of each purified Halobacterium sp. NRC-1 GV. The resulting fluorescent NRC-1 Ce6-GVs have dimensions comparable to that of native GVs and were efficiently taken up by human breast [MCF-7] and human hypopharyngeal [FaDu-GFP] cancer cells as monitored by confocal microscopy and flow cytometry. When exposed to light, internalized Ce6-GVs were 200-fold more effective on a molar basis than free Ce6 at killing cells. These results demonstrate the potential of Ce6-GVs as novel and promising nanomaterials for image-guided photodynamic therapy.





2014 ◽  
Vol 35 (3) ◽  
pp. 815-820 ◽  
Author(s):  
YUNYAN WU ◽  
HIDENOBU SATO ◽  
TAKAHIRO SUZUKI ◽  
TADASHI YOSHIZAWA ◽  
SATOKO MOROHASHI ◽  
...  




2003 ◽  
Vol 17 (10) ◽  
pp. 2002-2012 ◽  
Author(s):  
Olga A. Sukocheva ◽  
Lijun Wang ◽  
Nathaniel Albanese ◽  
Stuart M. Pitson ◽  
Mathew A. Vadas ◽  
...  

Abstract Current understanding of cytoplasmic signaling pathways that mediate estrogen action in human breast cancer is incomplete. Here we report that treatment with 17β-estradiol (E2) activates a novel signaling pathway via activation of sphingosine kinase (SphK) in MCF-7 breast cancer cells. We found that E2 has dual actions to stimulate SphK activity, i.e. a rapid and transient activation mediated by putative membrane G protein-coupled estrogen receptors (ER) and a delayed but prolonged activation relying on the transcriptional activity of ER. The E2-induced SphK activity consequently activates downstream signal cascades including intracellular Ca2+ mobilization and Erk1/2 activation. Enforced expression of human SphK type 1 gene in MCF-7 cells resulted in increases in SphK activity and cell growth. Moreover, the E2-dependent mitogenesis were highly promoted by SphK overexpression as determined by colony growth in soft agar and solid focus formation. In contrast, expression of SphKG82D, a dominant-negative mutant SphK, profoundly inhibited the E2-mediated Ca2+ mobilization, Erk1/2 activity and neoplastic cell growth. Thus, our data suggest that SphK activation is an important cytoplasmic signaling to transduce estrogen-dependent mitogenic and carcinogenic action in human breast cancer cells.



2008 ◽  
Vol 56 (14) ◽  
pp. 5970-5976 ◽  
Author(s):  
Mohammad A. Islam ◽  
Young S. Kim ◽  
Wook J. Jang ◽  
Seon M. Lee ◽  
Hoon G. Kim ◽  
...  


2017 ◽  
Vol 16 (1) ◽  
pp. 83 ◽  
Author(s):  
Hu Niu ◽  
Jun Wei Fan ◽  
Gang Pu Wang ◽  
Jian Wang ◽  
Yan Biao Chu ◽  
...  


1993 ◽  
Vol 215 (3) ◽  
pp. 671-676 ◽  
Author(s):  
Noriyoshi KIDA ◽  
Tomoaki YOSHIMURA ◽  
Haruo TAKAHASHI ◽  
Seiji NAGAO ◽  
Yoshinori NOZAWA ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document