scholarly journals Three-dimensional label-free observation of individual bacteria upon antibiotic treatment using optical diffraction tomography

2019 ◽  
Author(s):  
Jeonghun Oh ◽  
Jea Sung Ryu ◽  
Moosung Lee ◽  
Jaehwang Jung ◽  
Seung yun Han ◽  
...  

AbstractMeasuring alterations in bacteria upon antibiotic application is important for basic studies in microbiology, drug discovery, and clinical diagnosis, and disease treatment. However, imaging and 3D time-lapse response analysis of individual bacteria upon antibiotic application remain largely unexplored mainly due to limitations in imaging techniques. Here, we present a method to systematically investigate the alterations in individual bacteria in 3D and quantitatively analyze the effects of antibiotics. Using optical diffraction tomography, in-situ responses of Escherichia coli and Bacillus subtilis to various concentrations of ampicillin were investigated in a label-free and quantitative manner. The presented method reconstructs the dynamic changes in the 3D refractive-index distributions of living bacteria in response to antibiotics at sub-micrometer spatial resolution.

Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1368 ◽  
Author(s):  
Kim ◽  
Lee ◽  
Fujii ◽  
Lee ◽  
Lee ◽  
...  

The cell nucleus is a three-dimensional, dynamic organelle organized into subnuclear compartments such as chromatin and nucleoli. The structure and function of these compartments are maintained by diffusion and interactions between related factors as well as by dynamic and structural changes. Recent studies using fluorescent microscopic techniques suggest that protein factors can access and are freely mobile in heterochromatin and in mitotic chromosomes, despite their densely packed structure. However, the physicochemical properties of the chromosome during cell division are not fully understood. In the present study, characteristic properties such as the refractive index (RI), volume of the mitotic chromosomes, and diffusion coefficient (D) of fluorescent probes inside the chromosome were quantified using an approach combining label-free optical diffraction tomography with complementary confocal laser-scanning microscopy and fluorescence correlation spectroscopy. Variations in these parameters correlated with osmotic conditions, suggesting that changes in RI are consistent with those of the diffusion coefficient for mitotic chromosomes and cytosol. Serial RI tomography images of chromosomes in live cells during mitosis were compared with three-dimensional confocal micrographs to demonstrate that compaction and decompaction of chromosomes induced by osmotic change were characterized by linked changes in chromosome RI, volume, and the mobilities of fluorescent proteins.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sangwoo Park ◽  
Lucy Eunju Lee ◽  
Hanna Kim ◽  
Ji Eun Kim ◽  
Seung Jun Lee ◽  
...  

AbstractOptical diffraction tomography (ODT) enables imaging of unlabeled intracellular components by measuring the three-dimensional (3D) refractive index (RI). We aimed to detect intracellular monosodium urate (MSU) crystals in synovial leukocytes derived from gout patients using ODT. The 3D RI values of the synthetic MSU crystals, measured by ODT, ranged between 1.383 and 1.440. After adding synthetic MSU crystals to a macrophage, RI tomograms were reconstructed using ODT, and the reconstructed RI tomograms discerned intracellular and extracellular MSU crystals. We observed unlabeled synthetic MSU crystal entry into the cytoplasm of a macrophage through time-lapse imaging. Furthermore, using gout patient-derived synovial leukocytes, we successfully obtained RI tomogram images of intracellular MSU crystals. The 3D RI identification of MSU crystals was verified with birefringence through polarization-sensitive ODT measurements. Together, our results provide evidence that this novel ODT can identify birefringent MSU crystals in synovial leukocytes of patients with gout.


Author(s):  
Chungha Lee ◽  
Seunggyu Kim ◽  
Herve Hugonnet ◽  
Moosung Lee ◽  
Weisun Park ◽  
...  

Label-free, three-dimensional (3D) quantitative observations of on-chip vasculogenesis were achieved using optical diffraction tomography. Exploiting 3D refractive index maps as an intrinsic imaging contrast, the vascular structures, multicellular activities, and subcellular organelles of endothelial cells were imaged and analysed throughout vasculogenesis to characterise mature vascular networks without exogenous labelling.


2020 ◽  
Vol 11 (3) ◽  
pp. 1257 ◽  
Author(s):  
Jeonghun Oh ◽  
Jea Sung Ryu ◽  
Moosung Lee ◽  
Jaehwang Jung ◽  
SeungYun Han ◽  
...  

2017 ◽  
Author(s):  
Geon Kim ◽  
SangYun Lee ◽  
Seungwoo Shin ◽  
YongKeun Park

SummaryThe structure of pollen grains is related to the reproductive function of the plants. Here, three-dimensional (3D) refractive index maps were obtained for individual conifer pollen grains using optical diffraction tomography (ODT).The 3D morphological features of pollen grains from pine trees were investigated using measured refractive index maps, in which distinct substructures were clearly distinguished and analyzed.Morphological and physiochemical parameters of the pollen grains were quantified from the obtained refractive index (RI) maps and used to quantitatively study the interspecific differences of pollen grains from different strains.Our results demonstrate that ODT can assess the structure of pollen grains. This label-free and rapid 3D imaging approach may provide a new platform for understanding the physiology of pollen grains.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Chungha Lee ◽  
Seunggyu Kim ◽  
Herve Hugonnet ◽  
Moosung Lee ◽  
Weisun Park ◽  
...  

Label-free, three-dimensional (3D) quantitative observations of on-chip vasculogenesis were achieved using optical diffraction tomography. Exploiting 3D refractive index maps as an intrinsic imaging contrast, the vascular structures, multicellular activities, and...


Lab on a Chip ◽  
2018 ◽  
Vol 18 (22) ◽  
pp. 3484-3491 ◽  
Author(s):  
Seungwoo Shin ◽  
Jihye Kim ◽  
Je-Ryung Lee ◽  
Eun-chae Jeon ◽  
Tae-Jin Je ◽  
...  

Resolution-enhanced optical diffraction tomography using a micromirror-embedded coverslips.


Sign in / Sign up

Export Citation Format

Share Document