scholarly journals Overlapping and distinct roles of CDPK family members in the pre-erythrocytic cycle of the rodent malaria parasite, Plasmodium berghei

2019 ◽  
Author(s):  
K. Govindasamy ◽  
P. Bhanot

AbstractInvasion of, development within, and exit from hepatocytes by Plasmodium is essential for the parasite to establish the malaria-causing erythrocytic cycle. Identification of signaling pathways that operate during the pre-erythrocytic cycle provides insights into a critical stage of infection and potential targets for chemoprevention of disease. Calcium Dependent Protein Kinases (CDPK) represent a kinase family that is present in Plasmodium but absent in mammals. We demonstrate that P. berghei homologs of CDPK1, CDPK4 and CDPK5 play overlapping but distinct roles in sporozoite invasion and parasite egress from hepatocytes. All three kinases are expressed in sporozoites. All three are required for optimal motility of sporozoites and consequently their invasion of hepatocytes. Increased cGMP compensates for the functional loss of CDPK1 and CDPK5 during sporozoite invasion but cannot overcome CDPK4’s loss. CDPK1 and CDPK5 expression is downregulated after sporozoite invasion. CDPK5 reappears in a subset of late stage liver stages and is present in all merosomes. Chemical inhibition of CDPK4 and depletion of CDPK5 in liver stages suggests that these kinases play a role in the formation and/or release of merosomes from mature liver stages. Furthermore, depletion of CDPK5 in merosomes significantly delays a merosome-initiated erythrocytic cycle without affecting the infectivity of hepatic merozoites. These data suggest that CDPK5 is required for the release of hepatic merozoites from merosomes. Our work provides the first evidence that sporozoite invasion requires CDPK1 and CDPK5 and that the release of hepatic merozoites is a regulated process.SignificanceThe malaria-parasite Plasmodium begins its mammalian cycle by infecting hepatocytes in the liver. A single parasite differentiates into tens of thousands of hepatic merozoites which exit the host cell in vesicles called merosomes. Hepatic merozoites initiate the first round of erythrocytic infection that leads to disease symptoms. We show that optimal invasion of liver cells by Plasmodium requires the action of three closely-related parasite kinases, CDPK1, 4 and 5. Loss of any of the three enzymes in the parasite significantly reduces infection of liver cells. CDPK5 is also required for the release of hepatic merozoites from merosomes and therefore for initiating the erythrocytic cycle. A better understanding of how these kinases function could lead to drugs that prevent malaria.

mBio ◽  
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Sabrina Absalon ◽  
Karin Blomqvist ◽  
Rachel M. Rudlaff ◽  
Travis J. DeLano ◽  
Michael P. Pollastri ◽  
...  

ABSTRACT The human malaria parasite Plasmodium falciparum requires efficient egress out of an infected red blood cell for pathogenesis. This egress event is highly coordinated and is mediated by several signaling proteins, including the plant-like P. falciparum calcium-dependent protein kinase 5 (PfCDPK5). Knockdown of PfCDPK5 results in an egress block where parasites are trapped inside their host cells. The mechanism of this PfCDPK5-dependent block, however, remains unknown. Here, we show that PfCDPK5 colocalizes with a specialized set of parasite organelles known as micronemes and is required for their discharge, implicating failure of this step as the cause of the egress defect in PfCDPK5-deficient parasites. Furthermore, we show that PfCDPK5 cooperates with the P. falciparum cGMP-dependent kinase (PfPKG) to fully activate the protease cascade critical for parasite egress. The PfCDPK5-dependent arrest can be overcome by hyperactivation of PfPKG or by physical disruption of the arrested parasite, and we show that both treatments facilitate the release of the micronemes required for egress. Our results define the molecular mechanism of PfCDPK5 function and elucidate the complex signaling pathway of parasite egress. IMPORTANCE The signs and symptoms of clinical malaria result from the replication of parasites in human blood. Efficient egress of the malaria parasite Plasmodium falciparum out of an infected red blood cell is critical for pathogenesis. The P. falciparum calcium-dependent protein kinase 5 (PfCDPK5) is essential for parasite egress. Following PfCDPK5 knockdown, parasites remain trapped inside their host cell and do not egress, but the mechanism for this block remains unknown. We show that PfCDPK5 colocalizes with parasite organelles known as micronemes. We demonstrate that PfCDPK5 is critical for the discharge of these micronemes and that failure of this step is the molecular mechanism of the parasite egress arrest. We also show that hyperactivation of the cGMP-dependent kinase PKG can overcome this arrest. Our data suggest that small molecules that inhibit the egress signaling pathway could be effective antimalarial therapeutics.


2018 ◽  
Vol 20 (8) ◽  
Author(s):  
Stéphanie Hallée ◽  
Catherine Thériault ◽  
Dominic Gagnon ◽  
Jessica Kehrer ◽  
Friedrich Frischknecht ◽  
...  

2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Chrislaine Withers-Martinez ◽  
Malcolm Strath ◽  
Fiona Hackett ◽  
Lesley F. Haire ◽  
Steven A. Howell ◽  
...  

2020 ◽  
Vol 29 ◽  
pp. 096368971988488 ◽  
Author(s):  
George Ghartey-Kwansah ◽  
Qinan Yin ◽  
Zhongguang Li ◽  
Kristyn Gumpper ◽  
Yuting Sun ◽  
...  

Apicomplexan parasites have challenged researchers for nearly a century. A major challenge to developing efficient treatments and vaccines is the parasite’s ability to change its cellular and molecular makeup to develop intracellular and extracellular niches in its hosts. Ca2+ signaling is an important messenger for the egress of the malaria parasite from the infected erythrocyte, gametogenesis, ookinete motility in the mosquito, and sporozoite invasion of mammalian hepatocytes. Calcium-dependent protein kinases (CDPKs) have crucial functions in calcium signaling at various stages of the parasite’s life cycle; this therefore makes them attractive drug targets against malaria. Here, we summarize the functions of the various CDPK isoforms in relation to the malaria life cycle by emphasizing the molecular mechanism of developmental progression within host tissues. We also discuss the current development of anti-malarial drugs, such as how specific bumped kinase inhibitors (BKIs) for parasite CDPKs have been shown to reduce infection in Toxoplasma gondii, Cryptosporidium parvum, and Plasmodium falciparum. Our suggested combinations of BKIs, artemisinin derivatives with peroxide bridge, and inhibitors on the Ca(2+)-ATPase PfATP6 as a potential target should be inspected further as a treatment against malaria.


Sign in / Sign up

Export Citation Format

Share Document