artemisinin derivatives
Recently Published Documents


TOTAL DOCUMENTS

340
(FIVE YEARS 75)

H-INDEX

44
(FIVE YEARS 6)

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Yingying Hu ◽  
Nan Guo ◽  
Ting Yang ◽  
Jianghong Yan ◽  
Wenjun Wang ◽  
...  

Artemisinin (ART) is a bioactive molecule derived from the Chinese medicinal plant Artemisia annua (Asteraceae). ART and artemisinin derivatives (ARTs) have been effectively used for antimalaria treatment. The structure of ART is composed of a sesquiterpene lactone, including a peroxide internal bridge that is essential for its activity. In addition to their well-known antimalarial effects, ARTs have been shown recently to resist a wide range of tumors. The antineoplastic mechanisms of ART mainly include cell cycle inhibition, inhibition of tumor angiogenesis, DNA damage, and ferroptosis. In particular, ferroptosis is a novel nonapoptotic type of programmed cell death. However, the antitumor mechanisms of ARTs by regulating ferroptosis remain unclear. Through this review, we focus on the potential antitumor function of ARTs by acting on ferroptosis, including the regulation of iron metabolism, generation of reactive oxygen species (ROS), and activation of endoplasmic reticulum stress (ERS). This article systematically reviews the recent progress in ferroptosis research and provides a basis for ARTs as an anticancer drug in clinical practice.


2021 ◽  
Vol 14 (11) ◽  
pp. e245718
Author(s):  
Lotta Gustafsson ◽  
Sunil James ◽  
Yimeng Zhang ◽  
Karunakaran Pradeep Thozhuthumparambil

Artemisinin derivatives are used globally in the management of falciparum malaria. Postartemisinin delayed haemolysis (PADH) is a recognised adverse event contributing to severe anaemia. To the best of our knowledge, we report the first recorded fatal case of PADH. A 60-year-old woman presented with two episodes of collapse at home and feeling generally unwell. She had recently been treated for uncomplicated falciparum malaria 1 month prior with artemether 80 mg/lumefantrine 480 mg in Congo. Her results on admission revealed an anaemia (haemoglobin 43 g/L), raised lactate dehydrogenase and positive direct antiglobulin test that suggested an intravascular haemolytic process. She made a capacitous decision to refuse blood products in line with her personal beliefs. Despite best supportive treatment, she did not survive. This case highlights the importance of postartemisinin follow-up and should encourage discussion and careful consideration of its use in the context of lack of access to/patient refusal of blood products.


Folia Medica ◽  
2021 ◽  
Vol 63 (5) ◽  
pp. 637-646
Author(s):  
Sandip N. Badeliya ◽  
Pankaj P. Kapupara ◽  
Navneet F. Chauhan ◽  
Ishan I. Panchal

Malaria, a life-threatening disease, is caused by parasitic single-celled microorganisms. It is specifically transmitted by the anopheles female mosquito of the Plasmodium family. There are a lot of drugs available in the market to treat this life-challenging disease. Chloroquine, a cheaper molecule that is available worldwide, is one of them. Drug resistance has been observed with chloroquine as well as with some other quinine derivatives and with artemisinin derivatives in the southeast region of Asia in countries like Cambodia, Thailand, Myanmar, and Vietnam country since 1957. After 1970, the drug resistance has been further increased and it has been expanded in several localities of India. Also, antimalarial agents, particularly chloroquine, have so many side effects such as nausea, vomiting, blurred vision, abdominal cramps, diarrhea, headache, appetite loss, deprivation of hearing, skin color change, baldness, reduced body weight, and seizures. Furthermore, this drug cannot be given to pregnant women. Hence, it is the right time to design and develop newer antimalarial agents so that this kind of drug resistance, as well as side effects of the drugs, can be overcome.


2021 ◽  
Author(s):  
Catherine Margaret Moore ◽  
Jigang Wang ◽  
Qingsong Lin ◽  
Pedro Eduardo Ferreira ◽  
Mitchell A Avery ◽  
...  

Treatment failures with artemisinin combination therapies (ACTs) threaten global efforts to eradicate malaria. They highlight the importance of identifying drug targets and new inhibitors and of studying how existing antimalarial classes work. Herein we report the successful development of an heterologous expression-based compound screening tool. Validated drug target P. falciparum calcium ATPase6 (PfATP6) and a mammalian ortholog (SERCA1a) were functionally expressed in yeast providing a robust, sensitive, and specific screening tool. Whole-cell and in vitro assays consistently demonstrated inhibition and labelling of PfATP6 by artemisinins. Mutations in PfATP6 resulted in fitness costs that were ameliorated in the presence of artemisinin derivatives when studied in the yeast model. As previously hypothesised, PfATP6 is a target of artemisinins. Mammalian SERCA1a can be mutated to become more susceptible to artemisinins. The inexpensive, low technology yeast screening platform has identified unrelated classes of druggable PfATP6 inhibitors. Resistance to artemisinins may depend on mechanisms that can concomitantly address multi-targeting by artemisinins and fitness costs of mutations that reduce artemisinin susceptibility.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jianqing Peng ◽  
Qin Wang ◽  
Jia Zhou ◽  
Shuli Zhao ◽  
Pan Di ◽  
...  

Antimalarial drugs Dihydroartemisinin (DHA) and chloroquine phosphate (CQ) exhibit evident anti-cancer activity, particularly as combination therapy. DHA and CQ combination therapy has been proved to exhibit higher cytotoxic effect in tumor cells and lower toxicity to normal cells than combination of artemisinin derivatives (ARTs) and anticancer chemotherapy drugs. However, different physiochemical properties of DHA and CQ, leading to distinctive in vivo outcomes, considerably limited their synergistic effect in cancer treatment. Herein, we developed a lipid nanoparticle (LNP) for co-delivery of DHA and CQ to inhibit proliferation and metastasis of colorectal cancer. Considering the beneficial effects of acid/reactive oxide species (ROS)-sensitive phospholipids and targeting ligands for colorectal cancer cells, an RGD peptide-modified pH/ROS dual-sensitive LNP loaded with DHA and CQ (RLNP/DC) was prepared. It exhibited optimal cytotoxicity and suppression of invasion and metastasis in HCT116 cells in vitro, attributable to irreversible upregulation of intracellular ROS levels, downregulation of VEGF expression, and upregulation of paxillin expression. A mouse model of orthotopic metastasis of colorectal cancer was established to evaluate anti-proliferation and anti-metastasis effects of RLNP/DC in vivo. Thus, an optimized nanoplatform for DHA and CQ combination therapy was developed in this study that offered potential antitumor efficacy against colorectal cancer.


Tetrahedron ◽  
2021 ◽  
Vol 98 ◽  
pp. 132410
Author(s):  
Farnoush Mousavizadeh ◽  
Dimanthi Pliatsika ◽  
Toni Smeilus ◽  
Daniel Meyer ◽  
Marcel Kaiser ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5698
Author(s):  
Sennan Qiao ◽  
Hansi Zhang ◽  
Fei Sun ◽  
Zhenyan Jiang

Artemisinin (also known as Qinghaosu) , an active component of the Qinghao extract, is widely used as antimalarial drug. Previous studies reveal that artemisinin and its derivatives also have effective anti-inflammatory and immunomodulatory properties, but the direct molecular target remains unknown. Recently, several reports mentioned that myeloid differentiation factor 2 (MD-2, also known as lymphocyte antigen 96) may be the endogenous target of artemisinin in the inhibition of lipopolysaccharide signaling. However, the exact interaction between artemisinin and MD-2 is still not fully understood. Here, experimental and computational methods were employed to elucidate the relationship between the artemisinin and its inhibition mechanism. Experimental results showed that artemether exhibit higher anti-inflammatory activity performance than artemisinin and artesunate. Molecular docking results showed that artemisinin, artesunate, and artemether had similar binding poses, and all complexes remained stable throughout the whole molecular dynamics simulations, whereas the binding of artemisinin and its derivatives to MD-2 decreased the TLR4(Toll-Like Receptor 4)/MD-2 stability. Moreover, artemether exhibited lower binding energy as compared to artemisinin and artesunate, which is in good agreement with the experimental results. Leu61, Leu78, and Ile117 are indeed key residues that contribute to the binding free energy. Binding free energy analysis further confirmed that hydrophobic interactions were critical to maintain the binding mode of artemisinin and its derivatives with MD-2.


2021 ◽  
Author(s):  
M.S. Nair ◽  
Y. Huang ◽  
D.A. Fidock ◽  
M.J. Towler ◽  
P.J. Weathers

AbstractEthnopharmacological relevanceFor millennia in Southeast Asia, Artemisia annua L. was used to treat “fever”. This medicinal plant is effective against numerous infectious microbial and viral diseases and is used by many global communities as a source of artemisinin derivatives that are first-line drugs to treat malaria.Aim of the StudyThe SARS-CoV-2 (Covid-19) global pandemic has killed millions and evolved numerous variants, with delta being the most transmissible to date and causing break-through infections of vaccinated individuals. We further queried the efficacy of A. annua cultivars against new variants.Materials and MethodsUsing Vero E6 cells, we measured anti-SARS-CoV-2 activity of dried-leaf hot-water A. annua extracts of four cultivars, A3, BUR, MED, and SAM, to determine their efficacy against five fully infectious variants of the virus: alpha (B.1.1.7), beta (B.1.351), gamma (P.1), delta (B.1.617.2), and kappa (B.1.617.1).ResultsIn addition to being effective against the original wild type WA1, A. annua cultivars A3, BUR, MED and SAM were also potent against all five variants. IC50 and IC90 values based on measured artemisinin content ranged from 0.3-8.4 μM and 1.4-25.0 μM, respectively. The IC50 and IC90 values based on dried leaf weight (DW) used to make the tea infusions ranged from 11.0-67.7 μg DW and 59.5-160.6 μg DW, respectively. Cell toxicity was insignificant at a leaf dry weight of ≤50 μg in the extract of any cultivar.ConclusionsResults suggest that oral consumption of A. annua hot-water extracts (tea infusions), could provide a cost-effective therapy to help stave off the rapid global spread of these variants, buying time for broader implementation of vaccines.


BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Andrea L. Conroy ◽  
Robert O. Opoka ◽  
Paul Bangirana ◽  
Ruth Namazzi ◽  
Allen E. Okullo ◽  
...  

Abstract Background In 2011, the World Health Organization recommended injectable artesunate as the first-line therapy for severe malaria (SM) due to its superiority in reducing mortality compared to quinine. There are limited data on long-term clinical and neurobehavioral outcomes after artemisinin use for treatment of SM. Methods From 2008 to 2013, 502 Ugandan children with two common forms of SM, cerebral malaria and severe malarial anemia, were enrolled in a prospective observational study assessing long-term neurobehavioral and cognitive outcomes following SM. Children were evaluated a week after hospital discharge, and 6, 12, and 24 months of follow-up, and returned to hospital for any illness. In this study, we evaluated the impact of artemisinin derivatives on survival, post-discharge hospital readmission or death, and neurocognitive and behavioral outcomes over 2 years of follow-up. Results 346 children received quinine and 156 received parenteral artemisinin therapy (artemether or artesunate). After adjustment for disease severity, artemisinin derivatives were associated with a 78% reduction in in-hospital mortality (adjusted odds ratio, 0.22; 95% CI, 0.07–0.67). Among cerebral malaria survivors, children treated with artemisinin derivatives also had reduced neurologic deficits at discharge (quinine, 41.7%; artemisinin derivatives, 23.7%, p=0.007). Over a 2-year follow-up, artemisinin derivatives as compared to quinine were associated with better adjusted scores (negative scores better) in internalizing behavior and executive function in children irrespective of the age at severe malaria episode. After adjusting for multiple comparisons, artemisinin derivatives were associated with better adjusted scores in behavior and executive function in children <6 years of age at severe malaria exposure following adjustment for child age, sex, socioeconomic status, enrichment in the home environment, and the incidence of hospitalizations over follow-up. Children receiving artesunate had the greatest reduction in mortality and benefit in behavioral outcomes and had reduced inflammation at 1-month follow-up compared to children treated with quinine. Conclusions Treatment of severe malaria with artemisinin derivatives, particularly artesunate, results in reduced in-hospital mortality and neurologic deficits in children of all ages, reduced inflammation following recovery, and better long-term behavioral outcomes. These findings suggest artesunate has long-term beneficial effects in children surviving severe malaria.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Min Zhang ◽  
Chengqi Wang ◽  
Jenna Oberstaller ◽  
Phaedra Thomas ◽  
Thomas D. Otto ◽  
...  

AbstractThe emergence and spread of Plasmodium falciparum parasites resistant to front-line antimalarial artemisinin-combination therapies (ACT) threatens to erase the considerable gains against the disease of the last decade. Here, we develop a large-scale phenotypic screening pipeline and use it to carry out a large-scale forward-genetic phenotype screen in P. falciparum to identify genes allowing parasites to survive febrile temperatures. Screening identifies more than 200 P. falciparum mutants with differential responses to increased temperature. These mutants are more likely to be sensitive to artemisinin derivatives as well as to heightened oxidative stress. Major processes critical for P. falciparum tolerance to febrile temperatures and artemisinin include highly essential, conserved pathways associated with protein-folding, heat shock and proteasome-mediated degradation, and unexpectedly, isoprenoid biosynthesis, which originated from the ancestral genome of the parasite’s algal endosymbiont-derived plastid, the apicoplast. Apicoplast-targeted genes in general are upregulated in response to heat shock, as are other Plasmodium genes with orthologs in plant and algal genomes. Plasmodium falciparum parasites appear to exploit their innate febrile-response mechanisms to mediate resistance to artemisinin. Both responses depend on endosymbiont-derived genes in the parasite’s genome, suggesting a link to the evolutionary origins of Plasmodium parasites in free-living ancestors.


Sign in / Sign up

Export Citation Format

Share Document