biochemical reaction networks
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 36)

H-INDEX

27
(FIVE YEARS 2)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 119
Author(s):  
Simone G. Riva ◽  
Paolo Cazzaniga ◽  
Marco S. Nobile ◽  
Simone Spolaor ◽  
Leonardo Rundo ◽  
...  

Several software tools for the simulation and analysis of biochemical reaction networks have been developed in the last decades; however, assessing and comparing their computational performance in executing the typical tasks of computational systems biology can be limited by the lack of a standardized benchmarking approach. To overcome these limitations, we propose here a novel tool, named SMGen, designed to automatically generate synthetic models of reaction networks that, by construction, are characterized by relevant features (e.g., system connectivity and reaction discreteness) and non-trivial emergent dynamics of real biochemical networks. The generation of synthetic models in SMGen is based on the definition of an undirected graph consisting of a single connected component that, generally, results in a computationally demanding task; to speed up the overall process, SMGen exploits a main–worker paradigm. SMGen is also provided with a user-friendly graphical user interface, which allows the user to easily set up all the parameters required to generate a set of synthetic models with any number of reactions and species. We analysed the computational performance of SMGen by generating batches of symmetric and asymmetric reaction-based models (RBMs) of increasing size, showing how a different number of reactions and/or species affects the generation time. Our results show that when the number of reactions is higher than the number of species, SMGen has to identify and correct a large number of errors during the creation process of the RBMs, a circumstance that increases the running time. Still, SMGen can generate synthetic models with hundreds of species and reactions in less than 7 s.


2021 ◽  
Author(s):  
Lucy Ham ◽  
Megan Coomer ◽  
Michael P.H. Stumpf

Modelling and simulation of complex biochemical reaction networks form cornerstones of modern biophysics. Many of the approaches developed so far capture temporal fluctuations due to the inherent stochasticity of the biophysical processes, referred to as intrinsic noise. Stochastic fluctuations, however, predominantly stem from the interplay of the network with many other - and mostly unknown - fluctuating processes, as well as with various random signals arising from the extracellular world; these sources contribute extrinsic noise. Here we provide a computational simulation method to probe the stochastic dynamics of biochemical systems subject to both intrinsic and extrinsic noise. We develop an extrinsic chemical Langevin equation - a physically motivated extension of the chemical Langevin equation - to model intrinsically noisy reaction networks embedded in a stochastically fluctuating environment. The extrinsic CLE is a continuous approximation to the Chemical Master Equation (CME) with time-varying propensities. In our approach, noise is incorporated at the level of the CME, and can account for the full dynamics of the exogenous noise process, irrespective of timescales and their mismatches. We show that our method accurately captures the first two moments of the stationary probability density when compared with exact stochastic simulation methods, while reducing the computational runtime by several orders of magnitude. Our approach provides a method that is practical, computationally efficient and physically accurate to study systems that are simultaneously subject to a variety of noise sources.


2021 ◽  
Author(s):  
Simone G Riva ◽  
Paolo Cazzaniga ◽  
Marco S Nobile ◽  
Simone Spolaor ◽  
Leonardo Rundo ◽  
...  

Several software tools for the simulation and analysis of biochemical reaction networks have been developed in the last decades; however, assessing and comparing their computational performance in executing the typical tasks of Computational Systems Biology can be limited by the lack of a standardized benchmarking approach. To overcome these limitations, we propose here a novel tool, named SMGen, designed to automatically generate synthetic models of biochemical reaction networks that, by construction, are characterized by both features (e.g. system connectivity, reaction discreteness) and emergent dynamics resembling real biological networks. The generation of synthetic models in SMGen is based on the definition of an undirected graph consisting in a single connected component, which generally results in a computationally demanding task. To avoid any burden in the execution time, SMGen exploits a Main-Worker paradigm to speed up the overall process. SMGen is also provided with a user-friendly Graphical User Interface that allows the user to easily set up all the parameters required to generate a set of synthetic models with any used-defined number of reactions and species. We analysed the computational performance of SMGen by generating batches of symmetric and asymmetric RBMs of increasing size, showing how a different number of reactions and/or species affects the generation time. Our results show that when the number of reactions is higher than the number of species, SMGen has to identify and correct high numbers of errors during the creation process of the RBMs, a circumstance that increases the overall running time. Though, SMGen can create synthetic models with 512 species and reactions in less than 7 seconds. The open-source code of SMGen is available on GitLab: https://gitlab.com/sgr34/smgen.


2021 ◽  
Author(s):  
Efe Ilker ◽  
Özenç Güngör ◽  
Benjamin Kuznets-Speck ◽  
Joshua Chiel ◽  
Sebastian Deffner ◽  
...  

The biochemical reaction networks that regulate living systems are all stochastic to varying degrees. The resulting randomness affects biological outcomes at multiple scales, from the functional states of single proteins in a cell to the evolutionary trajectory of whole populations. Controlling how the distribution of these outcomes changes over time—via external interventions like timevarying concentrations of chemical species—is a complex challenge. In this work, we show how counterdiabatic (CD) driving, first developed to control quantum systems, provides a versatile tool for steering biological processes. We develop a practical graph-theoretic framework for CD driving in discrete-state continuous-time Markov networks. We illustrate the formalism with examples from gene regulation and chaperone-assisted protein folding, demonstrating the possibility that nature can exploit CD driving to accelerate response to sudden environmental changes. We generalize the method to continuum Fokker-Planck models, and apply it to study AFM single-molecule pulling experiments in regimes where the typical assumption of adiabaticity breaks down, as well as an evolutionary model with competing genetic variants subject to time-varying selective pressures. The AFM analysis shows how CD driving can eliminate non-equilibrium artifacts due to large force ramps in such experiments, allowing accurate estimation of biomolecular properties.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Hyukpyo Hong ◽  
Jinsu Kim ◽  
M. Ali Al-Radhawi ◽  
Eduardo D. Sontag ◽  
Jae Kyoung Kim

AbstractLong-term behaviors of biochemical reaction networks (BRNs) are described by steady states in deterministic models and stationary distributions in stochastic models. Unlike deterministic steady states, stationary distributions capturing inherent fluctuations of reactions are extremely difficult to derive analytically due to the curse of dimensionality. Here, we develop a method to derive analytic stationary distributions from deterministic steady states by transforming BRNs to have a special dynamic property, called complex balancing. Specifically, we merge nodes and edges of BRNs to match in- and out-flows of each node. This allows us to derive the stationary distributions of a large class of BRNs, including autophosphorylation networks of EGFR, PAK1, and Aurora B kinase and a genetic toggle switch. This reveals the unique properties of their stochastic dynamics such as robustness, sensitivity, and multi-modality. Importantly, we provide a user-friendly computational package, CASTANET, that automatically derives symbolic expressions of the stationary distributions of BRNs to understand their long-term stochasticity.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1074
Author(s):  
Vincent Wagner ◽  
Nicole Erika Radde

The Chemical Master Equation is a standard approach to model biochemical reaction networks. It consists of a system of linear differential equations, in which each state corresponds to a possible configuration of the reaction system, and the solution describes a time-dependent probability distribution over all configurations. The Stochastic Simulation Algorithm (SSA) is a method to simulate sample paths from this stochastic process. Both approaches are only applicable for small systems, characterized by few reactions and small numbers of molecules. For larger systems, the CME is computationally intractable due to a large number of possible configurations, and the SSA suffers from large reaction propensities. In our study, we focus on catalytic reaction systems, in which substrates are converted by catalytic molecules. We present an alternative description of these systems, called SiCaSMA, in which the full system is subdivided into smaller subsystems with one catalyst molecule each. These single catalyst subsystems can be analyzed individually, and their solutions are concatenated to give the solution of the full system. We show the validity of our approach by applying it to two test-bed reaction systems, a reversible switch of a molecule and methyltransferase-mediated DNA methylation.


2021 ◽  
Vol 18 (177) ◽  
Author(s):  
Tomislav Plesa ◽  
Guy-Bart Stan ◽  
Thomas E. Ouldridge ◽  
Wooli Bae

One of the main objectives of synthetic biology is the development of molecular controllers that can manipulate the dynamics of a given biochemical network that is at most partially known. When integrated into smaller compartments, such as living or synthetic cells, controllers have to be calibrated to factor in the intrinsic noise. In this context, biochemical controllers put forward in the literature have focused on manipulating the mean (first moment) and reducing the variance (second moment) of the target molecular species. However, many critical biochemical processes are realized via higher-order moments, particularly the number and configuration of the probability distribution modes (maxima). To bridge the gap, we put forward the stochastic morpher controller that can, under suitable timescale separations, morph the probability distribution of the target molecular species into a predefined form. The morphing can be performed at a lower-resolution, allowing one to achieve desired multi-modality/multi-stability, and at a higher-resolution, allowing one to achieve arbitrary probability distributions. Properties of the controller, such as robustness and convergence, are rigorously established, and demonstrated on various examples. Also proposed is a blueprint for an experimental implementation of stochastic morpher.


2021 ◽  
Author(s):  
Hyukpyo Hong ◽  
Jinsu Kim ◽  
M Ali Al-Radhawi ◽  
Eduardo D. Sontag ◽  
Jae Kyoung Kim

Long-term behaviors of biochemical reaction networks (BRNs) are described by steady states in deterministic models and stationary distributions in stochastic models. Unlike deterministic steady states, stationary distributions capturing inherent fluctuations of reactions are extremely difficult to derive analytically due to the curse of dimensionality. Here, we develop a method to derive analytic stationary distributions from deterministic steady states by transforming BRNs to have a special dynamic property, called complex balancing. Specifically, we merge nodes and edges of BRNs to match in- and out-flows of each node. This allows us to derive the stationary distributions of a large class of BRNs, including autophosphorylation networks of EGFR, PAK1, and Aurora B kinase and a genetic toggle switch. This reveals the unique properties of their stochastic dynamics such as robustness, sensitivity and multi-modality. Importantly, we provide a user-friendly computational package, CASTANET, that automatically derives sym- bolic expressions of the stationary distributions of BRNs to understand their long-term stochasticity.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 271
Author(s):  
Dongliang Zhang ◽  
Qi Ouyang

Living systems are open systems, where the laws of nonequilibrium thermodynamics play the important role. Therefore, studying living systems from a nonequilibrium thermodynamic aspect is interesting and useful. In this review, we briefly introduce the history and current development of nonequilibrium thermodynamics, especially that in biochemical systems. We first introduce historically how people realized the importance to study biological systems in the thermodynamic point of view. We then introduce the development of stochastic thermodynamics, especially three landmarks: Jarzynski equality, Crooks’ fluctuation theorem and thermodynamic uncertainty relation. We also summarize the current theoretical framework for stochastic thermodynamics in biochemical reaction networks, especially the thermodynamic concepts and instruments at nonequilibrium steady state. Finally, we show two applications and research paradigms for thermodynamic study in biological systems.


Sign in / Sign up

Export Citation Format

Share Document