scholarly journals Antifungal susceptibility testing of Aspergillus niger on silicon microwells by intensity-based reflectometric interference spectroscopy

2019 ◽  
Author(s):  
Christopher Heuer ◽  
Heidi Leonard ◽  
Nadav Nitzan ◽  
Ariella Lavy-Alperovitch ◽  
Naama Massad-Ivanir ◽  
...  

AbstractThe increasing number of invasive fungal infections among immunocompromised patients and the emergence of antifungal resistant pathogens has resulted in the need for rapid and reliable antifungal susceptibility testing (AFST). Accelerating antifungal susceptibility testing allows for advanced treatment decisions and the reduction in future instances of antifungal resistance. In this work, we demonstrate the application of a silicon phase grating as sensor for the detection of growth of Aspergillus niger (A. niger) by intensity-based reflectometric interference spectroscopy and its use as an antifungal susceptibility test. The silicon gratings provide a solid-liquid interface to capture micron-sized Aspergillus conidia within microwell arrays. Fungal growth is optically tracked and detected by the reduction in the intensity of reflected light from the silicon grating. The growth of A. niger in the presence of various concentrations of the antifungal agents voriconazole and amphotericin B is investigated by intensity-based reflectometric interference spectroscopy and used for the determination of the minimal inhibitory concentrations (MIC), which are compared to standard broth microdilution testing. This assay allows for expedited detection of fungal growth and provides a label-free alternative to standard antifungal susceptibility testing methods, such as broth microdilution and agar diffusion methods.

2020 ◽  
Vol 6 (10) ◽  
pp. 2560-2566
Author(s):  
Christopher Heuer ◽  
Heidi Leonard ◽  
Nadav Nitzan ◽  
Ariella Lavy-Alperovitch ◽  
Naama Massad-Ivanir ◽  
...  

2000 ◽  
Vol 44 (10) ◽  
pp. 2752-2758 ◽  
Author(s):  
Rama Ramani ◽  
Vishnu Chaturvedi

ABSTRACT Candida species other than Candida albicansfrequently cause nosocomial infections in immunocompromised patients. Some of these pathogens have either variable susceptibility patterns or intrinsic resistance against common azoles. The availability of a rapid and reproducible susceptibility-testing method is likely to help in the selection of an appropriate regimen for therapy. A flow cytometry (FC) method was used in the present study for susceptibility testing ofCandida glabrata, Candida guilliermondii,Candida krusei, Candida lusitaniae,Candida parapsilosis, Candida tropicalis, andCryptococcus neoformans based on accumulation of the DNA binding dye propidium iodide (PI). The results were compared with MIC results obtained for amphotericin B and fluconazole using the NCCLS broth microdilution method (M27-A). For FC, the yeast inoculum was prepared spectrophotometrically, the drugs were diluted in either RPMI 1640 or yeast nitrogen base containing 1% dextrose, and yeast samples and drug dilutions were incubated with amphotericin B and fluconazole, respectively, for 4 to 6 h. Sodium deoxycholate and PI were added at the end of incubation, and fluorescence was measured with a FACScan flow cytometer (Becton Dickinson). The lowest drug concentration that showed a 50% increase in mean channel fluorescence compared to that of the growth control was designated the MIC. All tests were repeated once. The MICs obtained by FC for all yeast isolates except C. lusitaniae were in very good agreement (within 1 dilution) of the results of the NCCLS broth microdilution method. Paired ttest values were not statistically significant (P = 0.377 for amphotericin B; P = 0.383 for fluconazole). Exceptionally, C. lusitaniae isolates showed higher MICs (2 dilutions or more) than in the corresponding NCCLS broth microdilution method for amphotericin B. Overall, FC antifungal susceptibility testing provided rapid, reproducible results that were statistically comparable to those obtained with the NCCLS method.


2015 ◽  
Vol 53 (10) ◽  
pp. 3176-3181 ◽  
Author(s):  
Frédéric Lamoth ◽  
Barbara D. Alexander

Invasive mold infections are life-threatening diseases for which appropriate antifungal therapy is crucial. Their epidemiology is evolving, with the emergence of triazole-resistantAspergillusspp. and multidrug-resistant non-Aspergillusmolds. Despite the lack of interpretive criteria, antifungal susceptibility testing of molds may be useful in guiding antifungal therapy. The standard broth microdilution method (BMD) is demanding and requires expertise. We assessed the performance of a commercialized gradient diffusion method (Etest method) as an alternative to BMD. The MICs or minimal effective concentrations (MECs) of amphotericin B, voriconazole, posaconazole, caspofungin, and micafungin were assessed for 290 clinical isolates of the most representative pathogenic molds (154Aspergillusand 136 non-Aspergillusisolates) with the BMD and Etest methods. Essential agreements (EAs) within ±2 dilutions of ≥90% between the two methods were considered acceptable. EAs for amphotericin B and voriconazole were >90% for most potentially susceptible species. For posaconazole, the correlation was acceptable forMucoromycotinabut Etest MIC values were consistently lower forAspergillusspp. (EAs of <90%). Excellent EAs were found for echinocandins with highly susceptible (MECs of <0.015 μg/ml) or intrinsically resistant (MECs of >16 μg/ml) strains. However, MEC determinations lacked consistency between methods for strains exhibiting mid-range MECs for echinocandins. We concluded that the Etest method is an appropriate alternative to BMD for antifungal susceptibility testing of molds under specific circumstances, including testing with amphotericin B or triazoles for non-Aspergillusmolds (MucoromycotinaandFusariumspp.). Additional study of molecularly characterized triazole-resistantAspergillusisolates is required to confirm the ability of the Etest method to detect voriconazole and posaconazole resistance amongAspergillusspp.


2015 ◽  
Vol 59 (6) ◽  
pp. 3663-3665 ◽  
Author(s):  
Rita Caramalho ◽  
Elisabeth Maurer ◽  
Ulrike Binder ◽  
Ricardo Araújo ◽  
Somayeh Dolatabadi ◽  
...  

ABSTRACTAmphotericin B and posaconazole susceptibility patterns were determined for the most prevalent Mucorales, following EUCAST (European Committee on Antimicrobial Susceptibility Testing) broth microdilution guidelines. In parallel, Etest was performed and evaluated against EUCAST. The overall agreement of MICs gained with Etest and EUCAST was 75.1%; therefore, Etest cannot be recommended for antifungal susceptibility testing of Mucorales. Amphotericin B was the most active drug against Mucorales speciesin vitro, while the activities of posaconazole were more restricted.


Sign in / Sign up

Export Citation Format

Share Document