scholarly journals Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells

2011 ◽  
Vol 25 (7) ◽  
pp. 742-754 ◽  
Author(s):  
I. M. Min ◽  
J. J. Waterfall ◽  
L. J. Core ◽  
R. J. Munroe ◽  
J. Schimenti ◽  
...  
Stem Cells ◽  
2009 ◽  
pp. N/A-N/A ◽  
Author(s):  
Moorthy P. Ponnusamy ◽  
Shonali Deb ◽  
Parama Dey ◽  
Subhankar Chakraborty ◽  
Satyanarayana Rachagani ◽  
...  

2010 ◽  
Vol 12 (6) ◽  
pp. 618-624 ◽  
Author(s):  
David Landeira ◽  
Stephan Sauer ◽  
Raymond Poot ◽  
Maria Dvorkina ◽  
Luca Mazzarella ◽  
...  

2020 ◽  
Vol 48 (22) ◽  
pp. 12660-12674
Author(s):  
Nur Zafirah Zaidan ◽  
Rupa Sridharan

Abstract The heterochromatin protein 1 (HP1) family members are canonical effectors and propagators of gene repression mediated by histone H3 lysine 9 (H3K9) methylation. HP1γ exhibits an increased interaction with active transcription elongation-associated factors in embryonic stem cells (ESCs) compared to somatic cells. However, whether this association has a functional consequence remains elusive. Here we find that genic HP1γ colocalizes and enhances enrichment of transcription elongation-associated H3K36me3 rather than H3K9me3. Unexpectedly, sustained H3K36me3 deposition is dependent on HP1γ. HP1γ-deleted ESCs display reduced H3K36me3 enrichment, concomitant with decreased expression at shared genes which function to maintain cellular homeostasis. Both the H3K9me3-binding chromodomain and histone binding ability of HP1γ are dispensable for maintaining H3K36me3 levels. Instead, the chromoshadow together with the hinge domain of HP1γ that confer protein and nucleic acid-binding ability are sufficient because they retain the ability to interact with NSD1, an H3K36 methyltransferase. HP1γ-deleted ESCs have a slower self-renewal rate and an impaired ability to differentiate towards cardiac mesoderm. Our findings reveal a requirement for HP1γ in faithful establishment of transcription elongation in ESCs, which regulates pluripotency.


Stem Cells ◽  
2011 ◽  
Vol 29 (10) ◽  
pp. 1517-1527 ◽  
Author(s):  
Raymond Ching-Bong Wong ◽  
Sara Pollan ◽  
Helen Fong ◽  
Abel Ibrahim ◽  
Ellen L. Smith ◽  
...  

2021 ◽  
Author(s):  
Youngseo Cheon ◽  
Sungwook Han ◽  
Taemook Kim ◽  
Daeyoup Lee

Promoter-proximal pausing of RNA polymerase II (RNAPII) is a critical step in early transcription elongation for the precise regulation of gene expression. Here, we provide evidence of promoter-proximal pausing-like distributions of RNAPII in S. cerevisiae. We found that genes bearing an alternative pausing site utilize Ino80p to properly localize RNAPII pausing at the first pausing site and to suppress the accumulation of RNAPII at the second pausing site, which is tightly associated with the +1 nucleosome. This alternative pausing site determination was dependent on the remodeling activity of Ino80p to modulate the +1 nucleosome position and might be controlled synergistically with Spt4p. Furthermore, we observed similar Ino80-dependent RNAPII pausing in mouse embryonic stem cells (mESCs). Based on our collective results, we hypothesize that the chromatin remodeler Ino80 plays a highly conserved role in regulating early RNAPII elongation to establish intact pausing.


2020 ◽  
Vol 6 (25) ◽  
pp. eaaz6699 ◽  
Author(s):  
Hiroshi Ochiai ◽  
Tetsutaro Hayashi ◽  
Mana Umeda ◽  
Mika Yoshimura ◽  
Akihito Harada ◽  
...  

Transcriptional bursting is the stochastic activation and inactivation of promoters, contributing to cell-to-cell heterogeneity in gene expression. However, the mechanism underlying the regulation of transcriptional bursting kinetics (burst size and frequency) in mammalian cells remains elusive. In this study, we performed single-cell RNA sequencing to analyze the intrinsic noise and mRNA levels for elucidating the transcriptional bursting kinetics in mouse embryonic stem cells. Informatics analyses and functional assays revealed that transcriptional bursting kinetics was regulated by a combination of promoter- and gene body–binding proteins, including the polycomb repressive complex 2 and transcription elongation factors. Furthermore, large-scale CRISPR-Cas9–based screening identified that the Akt/MAPK signaling pathway regulated bursting kinetics by modulating transcription elongation efficiency. These results uncovered the key molecular mechanisms underlying transcriptional bursting and cell-to-cell gene expression noise in mammalian cells.


Sign in / Sign up

Export Citation Format

Share Document