scholarly journals Separate roles for the DNA damage checkpoint protein kinases in stabilizing DNA replication forks

2008 ◽  
Vol 22 (13) ◽  
pp. 1816-1827 ◽  
Author(s):  
M. Segurado ◽  
J. F.X. Diffley
Cell Cycle ◽  
2012 ◽  
Vol 11 (10) ◽  
pp. 1918-1928 ◽  
Author(s):  
Erin K. Daugherity ◽  
Gabriel Balmus ◽  
Ahmed Al Saei ◽  
Elizabeth S. Moore ◽  
Delbert Abi Abdallah ◽  
...  

2020 ◽  
Author(s):  
Christophe de La Roche Saint-André ◽  
Vincent Géli

AbstractDNA replication is a highly regulated process that occurs in the context of chromatin structure and is sensitive to several histone post-translational modifications. In Saccharomyces cerevisiae, the histone methylase Set1 is responsible for the transcription-dependent deposition of H3K4 methylation (H3K4me) throughout the genome. Here we show that a combination of a hypomorphic replication mutation (orc5-1) with the absence of Set1 (set1Δ) compromises the progression through S phase, and this is associated with a large increase in DNA damage. The ensuing DNA damage checkpoint activation, in addition to that of the spindle assembly checkpoint, restricts the growth of orc5-1 set1Δ. Interestingly, orc5-1 set1Δ is sensitive to the lack of RNase H activity while a reduction of histone levels is able to counterbalance the loss of Set1. We propose that the recently described Set1-dependent mitigation of transcription-replication conflicts becomes critical for growth when the replication forks accelerate due to decreased origin firing in the orc5-1 background. Furthermore, we show that an increase of reactive oxygen species (ROS) levels, likely a consequence of the elevated DNA damage, is partly responsible for the lethality in orc5-1 set1Δ.Author summaryDNA replication, that ensures the duplication of the genetic material, starts at discrete sites, termed origins, before proceeding at replication forks whose progression is carefully controlled in order to avoid conflicts with the transcription of genes. In eukaryotes, DNA replication occurs in the context of chromatin, a structure in which DNA is wrapped around proteins, called histones, that are subjected to various chemical modifications. Among them, the methylation of the lysine 4 of histone H3 (H3K4) is carried out by Set1 in Saccharomyces cerevisiae, specifically at transcribed genes. We report that, when the replication fork accelerates in response to a reduction of active origins, the absence of Set1 leads to accumulation of DNA damage. Because H3K4 methylation was recently shown to slow down replication at transcribed genes, we propose that the Set1-dependent becomes crucial to limit the occurrence of conflicts between replication and transcription caused by replication fork acceleration. In agreement with this model, stabilization of transcription-dependent structures or reduction histone levels, to limit replication fork velocity, respectively exacerbates or moderates the effect of Set1 loss. Last, but not least, we show that the oxidative stress associated to DNA damage is partly responsible for cell lethality.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Soumitra Sau ◽  
Batia Liefshitz ◽  
Martin Kupiec

ABSTRACT The PCNA (proliferating cell nuclear antigen) ring plays central roles during DNA replication and repair. The yeast Elg1 RFC-like complex (RLC) is the principal unloader of chromatin-bound PCNA and thus plays a central role in maintaining genome stability. Here we identify a role for Elg1 in the unloading of PCNA during DNA damage. Using DNA damage checkpoint (DC)-inducible and replication checkpoint (RC)-inducible strains, we show that Elg1 is essential for eliciting the signal in the DC branch. In the absence of Elg1 activity, the Rad9 (53BP1) and Dpb11 (TopBP1) adaptor proteins are recruited but fail to be phosphorylated by Mec1 (ATR), resulting in a lack of checkpoint activation. The chromatin immunoprecipitation of PCNA at the Lac operator sites reveals that accumulated local PCNA influences the checkpoint activation process in elg1 mutants. Our data suggest that Elg1 participates in a mechanism that may coordinate PCNA unloading during DNA repair with DNA damage checkpoint induction. IMPORTANCE The Elg1protein forms an RFC-like complex in charge of unloading PCNA from chromatin during DNA replication and repair. Mutations in the ELG1 gene caused genomic instability in all organisms tested and cancer in mammals. Here we show that Elg1 plays a role in the induction of the DNA damage checkpoint, a cellular response to DNA damage. We show that this defect is due to a defect in the signal amplification process during induction. Thus, cells coordinate the cell's response and the PCNA unloading through the activity of Elg1.


2003 ◽  
Vol 23 (9) ◽  
pp. 3287-3304 ◽  
Author(s):  
Kang Liu ◽  
Fang-Tsyr Lin ◽  
J. Michael Ruppert ◽  
Weei-Chin Lin

ABSTRACT The E2F transcription factor integrates cellular signals and coordinates cell cycle progression. Our prior studies demonstrated selective induction and stabilization of E2F1 through ATM-dependent phosphorylation in response to DNA damage. Here we report that DNA topoisomerase IIβ binding protein 1 (TopBP1) regulates E2F1 during DNA damage. TopBP1 contains eight BRCT (BRCA1 carboxyl-terminal) motifs and upon DNA damage is recruited to stalled replication forks, where it participates in a DNA damage checkpoint. Here we demonstrated an interaction between TopBP1 and E2F1. The interaction depended on the amino terminus of E2F1 and the sixth BRCT domain of TopBP1. It was specific to E2F1 and was not observed in E2F2, E2F3, or E2F4. This interaction was induced by DNA damage and phosphorylation of E2F1 by ATM. Through this interaction, TopBP1 repressed multiple activities of E2F1, including transcriptional activity, induction of S-phase entry, and apoptosis. Furthermore, TopBP1 relocalized E2F1 from diffuse nuclear distribution to discrete punctate nuclear foci, where E2F1 colocalized with TopBP1 and BRCA1. Thus, the specific interaction between TopBP1 and E2F1 during DNA damage inhibits the known E2F1 activities but recruits E2F1 to a BRCA1-containing repair complex, suggesting a direct role of E2F1 in DNA damage checkpoint/repair at stalled replication forks.


2019 ◽  
Vol 510 (4) ◽  
pp. 629-635 ◽  
Author(s):  
Ikuko Miyamoto ◽  
Ryota Ozaki ◽  
Kazuyuki Yamaguchi ◽  
Kaori Yamamoto ◽  
Atsuki Kaneko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document