scholarly journals Synergistic activation of the insulin gene by a LIM-homeo domain protein and a basic helix-loop-helix protein: building a functional insulin minienhancer complex.

1992 ◽  
Vol 6 (11) ◽  
pp. 2165-2176 ◽  
Author(s):  
M S German ◽  
J Wang ◽  
R B Chadwick ◽  
W J Rutter
2000 ◽  
Vol 12 (10) ◽  
pp. 1863-1878 ◽  
Author(s):  
Nathalie Nesi ◽  
Isabelle Debeaujon ◽  
Clarisse Jond ◽  
Georges Pelletier ◽  
Michel Caboche ◽  
...  

1998 ◽  
Vol 18 (5) ◽  
pp. 2957-2964 ◽  
Author(s):  
Yi Qiu ◽  
Arun Sharma ◽  
Roland Stein

ABSTRACT Pancreatic β-cell-type-specific and glucose-inducible transcription of the insulin gene is mediated by the basic helix-loop-helix factors that bind to and activate expression from an E-box element within its enhancer. The E-box activator is a heteromeric complex composed of a β-cell-enriched factor, BETA2/NeuroD, and ubiquitously distributed proteins encoded by the E2A and HEB genes. Previously, we demonstrated that the adenovirus type 5 E1A proteins repressed stimulation by the E-box activator in β cells. In this study, our objective was to determine how E1A repressed activator function. The results indicate that E1A reduces activation by binding to and sequestering the p300 cellular coactivator protein. Thus, we show that expression of p300 in β cells can relieve inhibition by E1A, as well as potentiate activation by the endogenous insulin E-box transcription factors. p300 stimulated activation from GAL4 (amino acids 1 to 147) fusion constructs of either BETA2/NeuroD or the E2A-encoded E47 protein. The sequences spanning the activation domains of BETA2/NeuroD (amino acids 156 to 355) and E47 (amino acids 1 to 99 and 325 to 432) were required for this response. The same region of BETA2/NeuroD was shown to be important for binding to p300 in vitro. The sequences of p300 involved in E47 and BETA2/NeuroD association resided between amino acids 1 and 1257 and 1945 and 2377, respectively. A mutation in p300 that abolished binding to BETA2/NeuroD also destroyed the ability of p300 to activate insulin E-box-directed transcription in β cells. Our results indicate that physical and functional interactions between p300 and the E-box activator factors play an important role in insulin gene transcription.


1991 ◽  
Vol 11 (3) ◽  
pp. 1734-1738 ◽  
Author(s):  
S R Cordle ◽  
E Henderson ◽  
H Masuoka ◽  
P A Weil ◽  
R Stein

The pancreatic beta-cell-specific expression of the insulin gene is mediated, at least in part, by the interaction of unique trans-acting beta-cell factors with a cis-acting DNA element found within the insulin enhancer (5'-GC CATCTG-3'; referred to as the insulin control element [ICE]) present in the rat insulin II gene between positions -100 and -91. This sequence element contains the consensus binding site for a group of DNA-binding transcription factors called basic helix-loop-helix proteins (B-HLH). As a consequence of the similarity of the ICE with the DNA sequence motif associated with the cis-acting elements of the B-HLH class of binding proteins (CANNTG), the ability of this class of proteins to regulate cell-type-specific expression of the insulin gene was addressed. Cotransfection experiments indicated that overexpression of Id, a negative regulator of B-HLH protein function, inhibits ICE-mediated activity. Antibody to the E12/E47 B-HLH proteins attenuated the formation, in vitro, of a previously described (J. Whelan, S. R. Cordle, E. Henderson, P. A. Weil, and R. Stein, Mol. Cell. Biol. 10:1564-1572, 1990) beta-cell-specific activator factor(s)-ICE DNA complex. Both of these B-HLH proteins (E12 and E47) bound efficiently and specifically to the ICE sequences. The role of B-HLH proteins in mediating pancreatic beta-cell-specific transcription of the insulin gene is discussed.


1991 ◽  
Vol 11 (3) ◽  
pp. 1734-1738 ◽  
Author(s):  
S R Cordle ◽  
E Henderson ◽  
H Masuoka ◽  
P A Weil ◽  
R Stein

The pancreatic beta-cell-specific expression of the insulin gene is mediated, at least in part, by the interaction of unique trans-acting beta-cell factors with a cis-acting DNA element found within the insulin enhancer (5'-GC CATCTG-3'; referred to as the insulin control element [ICE]) present in the rat insulin II gene between positions -100 and -91. This sequence element contains the consensus binding site for a group of DNA-binding transcription factors called basic helix-loop-helix proteins (B-HLH). As a consequence of the similarity of the ICE with the DNA sequence motif associated with the cis-acting elements of the B-HLH class of binding proteins (CANNTG), the ability of this class of proteins to regulate cell-type-specific expression of the insulin gene was addressed. Cotransfection experiments indicated that overexpression of Id, a negative regulator of B-HLH protein function, inhibits ICE-mediated activity. Antibody to the E12/E47 B-HLH proteins attenuated the formation, in vitro, of a previously described (J. Whelan, S. R. Cordle, E. Henderson, P. A. Weil, and R. Stein, Mol. Cell. Biol. 10:1564-1572, 1990) beta-cell-specific activator factor(s)-ICE DNA complex. Both of these B-HLH proteins (E12 and E47) bound efficiently and specifically to the ICE sequences. The role of B-HLH proteins in mediating pancreatic beta-cell-specific transcription of the insulin gene is discussed.


2000 ◽  
Vol 12 (10) ◽  
pp. 1863 ◽  
Author(s):  
Nathalie Nesi ◽  
Isabelle Debeaujon ◽  
Clarisse Jond ◽  
Georges Pelletier ◽  
Michel Caboche ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document