scholarly journals The Homeoprotein Alx3 Expressed in Pancreatic β-Cells Regulates Insulin Gene Transcription by Interacting with the Basic Helix-Loop-Helix Protein E47

2006 ◽  
Vol 20 (11) ◽  
pp. 2876-2889 ◽  
Author(s):  
Mercedes Mirasierra ◽  
Mario Vallejo
2002 ◽  
Vol 30 (2) ◽  
pp. 312-317 ◽  
Author(s):  
B. Leibiger ◽  
T. Moede ◽  
S. Uhles ◽  
P.-O. Berggren ◽  
I. B. Leibiger

Short-term regulation of insulin gene transcription is still a matter of debate. However, an increasing body of evidence shows that insulin gene transcription is affected by signals, such as incretins, glucose metabolites, intracellular Ca2+, and by insulin secreted from pancreatic β-cells, all supporting the concept of an immediate response resulting in insulin gene transcription following food-uptake. The present review aims to summarize the current view on the mechanisms underlying the up-regulation of insulin gene transcription in response to glucose, the major nutrient factor in insulin secretion and biosynthesis.


2003 ◽  
Vol 278 (35) ◽  
pp. 32969-32977 ◽  
Author(s):  
Shih Khoo ◽  
Steven C. Griffen ◽  
Ying Xia ◽  
Richard J. Baer ◽  
Michael S. German ◽  
...  

2003 ◽  
Vol 278 (26) ◽  
pp. 23617-23623 ◽  
Author(s):  
Swarup K. Chakrabarti ◽  
Joshua Francis ◽  
Suzanne M. Ziesmann ◽  
James C. Garmey ◽  
Raghavendra G. Mirmira

2007 ◽  
Vol 353 (4) ◽  
pp. 1011-1016 ◽  
Author(s):  
S.C. Campbell ◽  
H. Richardson ◽  
W.F. Ferris ◽  
C.S. Butler ◽  
W.M. Macfarlane

1999 ◽  
Vol 19 (1) ◽  
pp. 704-713 ◽  
Author(s):  
Arun Sharma ◽  
Melissa Moore ◽  
Edoardo Marcora ◽  
Jacqueline E. Lee ◽  
Yi Qiu ◽  
...  

ABSTRACT NeuroD1/BETA2 is a key regulator of pancreatic islet morphogenesis and insulin hormone gene transcription in islet β cells. This factor also appears to be involved in neurogenic differentiation, because NeuroD1/BETA2 is able to induce premature differentiation of neuronal precursors and convert ectoderm into fully differentiated neurons upon ectopic expression in Xenopus embryos. We have identified amino acid sequences in mammalian and Xenopus NeuroD1/BETA2 that are necessary for insulin gene expression and ectopic neurogenesis. Our results indicate that evolutionarily conserved sequences spanning the basic helix-loop-helix (amino acids [aa] 100 to 155) and C-terminal (aa 156 to 355) regions are important for both of these processes. The transactivation domains (AD1, aa 189 to 299; AD2, aa 300 to 355) were within the carboxy-terminal region, as analyzed by using GAL4:NeuroD1/BETA2 chimeras. Selective activation of mammalian insulin gene enhancer-driven expression and ectopic neurogenesis in Xenopus embryos was regulated by two independent and separable domains of NeuroD1/BETA2, located between aa 156 to 251 and aa 252 to 355. GAL4:NeuroD1/BETA2 constructs spanning these sequences demonstrated that only aa 252 to 355 contained activation domain function, although both aa 156 to 251 and 300 to 355 were found to interact with the p300/CREB binding protein (CBP) coactivator. These results implicate p300/CBP in NeuroD1/BETA2 function and further suggest that comparable mechanisms are utilized to direct target gene transcription during differentiation and in adult islet β cells.


1998 ◽  
Vol 18 (5) ◽  
pp. 2957-2964 ◽  
Author(s):  
Yi Qiu ◽  
Arun Sharma ◽  
Roland Stein

ABSTRACT Pancreatic β-cell-type-specific and glucose-inducible transcription of the insulin gene is mediated by the basic helix-loop-helix factors that bind to and activate expression from an E-box element within its enhancer. The E-box activator is a heteromeric complex composed of a β-cell-enriched factor, BETA2/NeuroD, and ubiquitously distributed proteins encoded by the E2A and HEB genes. Previously, we demonstrated that the adenovirus type 5 E1A proteins repressed stimulation by the E-box activator in β cells. In this study, our objective was to determine how E1A repressed activator function. The results indicate that E1A reduces activation by binding to and sequestering the p300 cellular coactivator protein. Thus, we show that expression of p300 in β cells can relieve inhibition by E1A, as well as potentiate activation by the endogenous insulin E-box transcription factors. p300 stimulated activation from GAL4 (amino acids 1 to 147) fusion constructs of either BETA2/NeuroD or the E2A-encoded E47 protein. The sequences spanning the activation domains of BETA2/NeuroD (amino acids 156 to 355) and E47 (amino acids 1 to 99 and 325 to 432) were required for this response. The same region of BETA2/NeuroD was shown to be important for binding to p300 in vitro. The sequences of p300 involved in E47 and BETA2/NeuroD association resided between amino acids 1 and 1257 and 1945 and 2377, respectively. A mutation in p300 that abolished binding to BETA2/NeuroD also destroyed the ability of p300 to activate insulin E-box-directed transcription in β cells. Our results indicate that physical and functional interactions between p300 and the E-box activator factors play an important role in insulin gene transcription.


2002 ◽  
Vol 22 (2) ◽  
pp. 412-420 ◽  
Author(s):  
Yi Qiu ◽  
Min Guo ◽  
Suming Huang ◽  
Roland Stein

ABSTRACT Pancreatic β-cell-type-specific expression of the insulin gene requires both ubiquitous and cell-enriched activators, which are organized within the enhancer region into a network of protein-protein and protein-DNA interactions to promote transcriptional synergy. Protein-protein-mediated communication between DNA-bound activators and the RNA polymerase II transcriptional machinery is inhibited by the adenovirus E1A protein as a result of E1A’s binding to the p300 coactivator. E1A disrupts signaling between the non-DNA-binding p300 protein and the basic helix-loop-helix DNA-binding factors of insulin’s E-element activator (i.e., the islet-enriched BETA2 and generally distributed E47 proteins), as well as a distinct but unidentified enhancer factor. In the present report, we show that E1A binding to p300 prevents activation by insulin’s β-cell-enriched PDX-1 activator. p300 interacts directly with the N-terminal region of the PDX-1 homeodomain protein, which contains conserved amino acid sequences essential for activation. The unique combination of PDX-1, BETA2, E47, and p300 was shown to promote synergistic activation from a transfected insulin enhancer-driven reporter construct in non-β cells, a process inhibited by E1A. In addition, E1A inhibited the level of PDX-1 and BETA2 complex formation in β cells. These results indicate that E1A inhibits insulin gene transcription by preventing communication between the p300 coactivator and key DNA-bound activators, like PDX-1 and BETA2:E47.


Sign in / Sign up

Export Citation Format

Share Document