scholarly journals Synergistic activation of the human orphan nuclear receptor SHP gene promoter by basic helix-loop-helix protein E2A and orphan nuclear receptor SF-1

2003 ◽  
Vol 31 (23) ◽  
pp. 6860-6872 ◽  
Author(s):  
H.-J. Kim
2004 ◽  
Vol 18 (4) ◽  
pp. 776-790 ◽  
Author(s):  
Joon-Young Kim ◽  
Khoi Chu ◽  
Han-Jong Kim ◽  
Hyun-A Seong ◽  
Ki-Cheol Park ◽  
...  

Abstract Small heterodimer partner (SHP; NR0B2) is an atypical orphan nuclear receptor that lacks a conventional DNA binding domain (DBD) and represses the transcriptional activity of various nuclear receptors. In this study, we examined the novel cross talk between SHP and BETA2/NeuroD, a basic helix-loop-helix transcription factor. In vitro and in vivo protein interaction studies showed that SHP physically interacts with BETA2/NeuroD, but not its heterodimer partner E47. Moreover, confocal microscopic study and immunostaining results demonstrated that SHP colocalized with BETA2 in islets of mouse pancreas. SHP inhibited BETA2/NeuroD-dependent transactivation of an E-box reporter, whereas SHP was unable to repress the E47-mediated transactivation and the E-box mutant reporter activity. In addition, SHP repressed the BETA2-dependent activity of glucokinase and cyclin-dependent kinase inhibitor p21 gene promoters. Gel shift and in vitro protein competition assays indicated that SHP inhibits neither dimerization nor DNA binding of BETA2 and E47. Rather, SHP directly repressed BETA2 transcriptional activity and p300-enhanced BETA2/NeuroD transcriptional activity by inhibiting interaction between BETA2 and coactivator p300. We also showed that C-terminal repression domain within SHP is also required for BETA2 repression. However, inhibition of BETA2 activity was not observed by naturally occurring human SHP mutants that cannot interact with BETA2/NeuroD. Taken together, these results suggest that SHP acts as a novel corepressor for basic helix-loop-helix transcription factor BETA2/NeuroD by competing with coactivator p300 for binding to BETA2/NeuroD and by its direct transcriptional repression function.


Development ◽  
1995 ◽  
Vol 121 (8) ◽  
pp. 2513-2523 ◽  
Author(s):  
J.C. Cross ◽  
M.L. Flannery ◽  
M.A. Blanar ◽  
E. Steingrimsson ◽  
N.A. Jenkins ◽  
...  

Trophoblast cells are the first lineage to form in the mammalian conceptus and mediate the process of implantation. We report the cloning of a basic helix-loop-helix (bHLH) transcription factor gene, Hxt, that is expressed in early trophoblast and in differentiated giant cells. A separate gene, Hed, encodes a related protein that is expressed in maternal deciduum surrounding the implantation site. Overexpression of Hxt in mouse blastomeres directed their development into trophoblast cells in blastocysts. In addition, overexpression of Hxt induced the differentiation of rat trophoblast (Rcho-1) stem cells as assayed by changes in cell adhesion and by activation of the placental lactogen-I gene promoter, a trophoblast giant cell-specific gene. In contrast, the negative HLH regulator, Id-1, inhibited Rcho-1 differentiation and placental lactogen-I transcription. These data demonstrate a role for HLH factors in regulating trophoblast development and indicate a positive role for Hxt in promoting the formation of trophoblast giant cells.


Oncogene ◽  
1998 ◽  
Vol 17 (19) ◽  
pp. 2429-2435 ◽  
Author(s):  
Jean-Marc Vanacker ◽  
Edith Bonnelye ◽  
Cateline Delmarre ◽  
Vincent Laudet

2005 ◽  
Vol 19 (6) ◽  
pp. 1452-1459 ◽  
Author(s):  
Lei Yin ◽  
Mitchell A. Lazar

Abstract Transcriptional regulation plays a fundamental role in controlling circadian oscillation of clock gene expression. The orphan nuclear receptor Rev-erbα has recently been implicated as a major regulator of the circadian clock. Expression of Bmal1, the master regulator of circadian rhythm in mammals, is negatively correlated with Rev-erbα mRNA level, but the molecular mechanism underlying this regulation is largely unknown. Here we show that Rev-erbα dramatically represses the basal activity of the mouse Bmal1 gene promoter via two monomeric binding sites, both of which are required for repression and are conserved between mouse and human. Rev-erbα directly binds to the mouse Bmal1 promoter and recruits the endogenous nuclear receptor corepressor (N-CoR)/histone deacetylase 3 (HDAC3) complex, in association with a decrease in histone acetylation. The endogenous N-CoR/HDAC3 complex is also associated with the endogenous Bmal1 promoter in human HepG2 liver cells, where a reduction in cellular HDAC3 level markedly increases the expression of Bmal1 mRNA. These data demonstrate a new function for the N-CoR/HDAC3 complex in regulating the expression of genes involved in circadian rhythm by functioning as corepressor for Rev-erbα.


2003 ◽  
Vol 23 (1) ◽  
pp. 259-271 ◽  
Author(s):  
Subir K. Ray ◽  
Junko Nishitani ◽  
Mary W. Petry ◽  
Michael Y. Fessing ◽  
Andrew B. Leiter

ABSTRACT The basic helix-loop-helix protein BETA2/NeuroD activates transcription of the secretin gene and is essential for terminal differentiation of secretin-producing enteroendocrine cells. However, in heterodimeric complexes with its partner basic helix-loop-helix proteins, BETA2 does not appear to be a strong activator of transcription by itself. Mutational analysis of a proximal enhancer in the secretin gene identified several cis-acting elements in addition to the E-box binding site for BETA2. We identified by expression cloning the zinc finger protein RREB-1, also known to exist as a longer form, Finb, as the protein binding to one of the mutationally sensitive elements. Finb/RREB-1 lacks an intrinsic activation domain and by itself did not activate secretin gene transcription. Here we show that Finb/RREB-1 can associate with BETA2 to enhance its transcription-activating function. Both DNA binding and physical interaction of Finb/RREB-1 with BETA2 are required to potentiate transcription. Thus, Finb/RREB-1 does not function as a classical activator of transcription that recruits an activation domain to a DNA-protein complex. Finb/RREB-1 may be distinguished from coactivators, which increase transcription without sequence-specific DNA binding. We suggest that Finb/RREB-1 should be considered a potentiator of transcription, representing a distinct category of transcription-regulating proteins.


2007 ◽  
Vol 353 (4) ◽  
pp. 895-901 ◽  
Author(s):  
Ako Oiwa ◽  
Tomoko Kakizawa ◽  
Takahide Miyamoto ◽  
Koh Yamashita ◽  
Wei Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document