scholarly journals PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies

2001 ◽  
Vol 15 (23) ◽  
pp. 3088-3103 ◽  
Author(s):  
S. Sachdev
2018 ◽  
Vol 17 (6) ◽  
pp. 1196-1208 ◽  
Author(s):  
Mohamed Ali Maroui ◽  
Ghizlane Maarifi ◽  
Francis P. McManus ◽  
Frédéric Lamoliatte ◽  
Pierre Thibault ◽  
...  

We report that interferon (IFN) α treatment at short and long periods increases the global cellular SUMOylation and requires the presence of the SUMO E3 ligase promyelocytic leukemia protein (PML), the organizer of PML nuclear bodies (NBs). Several PML isoforms (PMLI-PMLVII) derived from a single PML gene by alternative splicing, share the same N-terminal region but differ in their C-terminal sequences. Introducing each of the human PML isoform in PML-negative cells revealed that enhanced SUMOylation in response to IFN is orchestrated by PMLIII and PMLIV. Large-scale proteomics experiments enabled the identification of 558 SUMO sites on 389 proteins, of which 172 sites showed differential regulation upon IFNα stimulation, including K49 from UBC9, the sole SUMO E2 protein. Furthermore, IFNα induces PML-dependent UBC9 transfer to the nuclear matrix where it colocalizes with PML within the NBs and enhances cellular SUMOylation levels. Our results demonstrate that SUMOylated UBC9 and PML are key players for IFN-increased cellular SUMOylation.


2019 ◽  
Vol 116 (39) ◽  
pp. 19552-19562 ◽  
Author(s):  
Justine Sitz ◽  
Sophie Anne Blanchet ◽  
Steven F. Gameiro ◽  
Elise Biquand ◽  
Tia M. Morgan ◽  
...  

High-risk human papillomaviruses (HR-HPVs) promote cervical cancer as well as a subset of anogenital and head and neck cancers. Due to their limited coding capacity, HPVs hijack the host cell’s DNA replication and repair machineries to replicate their own genomes. How this host–pathogen interaction contributes to genomic instability is unknown. Here, we report that HPV-infected cancer cells express high levels of RNF168, an E3 ubiquitin ligase that is critical for proper DNA repair following DNA double-strand breaks, and accumulate high numbers of 53BP1 nuclear bodies, a marker of genomic instability induced by replication stress. We describe a mechanism by which HPV E7 subverts the function of RNF168 at DNA double-strand breaks, providing a rationale for increased homology-directed recombination in E6/E7-expressing cervical cancer cells. By targeting a new regulatory domain of RNF168, E7 binds directly to the E3 ligase without affecting its enzymatic activity. As RNF168 knockdown impairs viral genome amplification in differentiated keratinocytes, we propose that E7 hijacks the E3 ligase to promote the viral replicative cycle. This study reveals a mechanism by which tumor viruses reshape the cellular response to DNA damage by manipulating RNF168-dependent ubiquitin signaling. Importantly, our findings reveal a pathway by which HPV may promote the genomic instability that drives oncogenesis.


2012 ◽  
Vol 46 (3) ◽  
pp. 287-298 ◽  
Author(s):  
Andreas Werner ◽  
Annette Flotho ◽  
Frauke Melchior
Keyword(s):  

Cancer Cell ◽  
2014 ◽  
Vol 25 (4) ◽  
pp. 547-548
Author(s):  
Jie Li ◽  
Ying Xu ◽  
Xi-Dai Long ◽  
Wei Wang ◽  
Hui-Ke Jiao ◽  
...  

2018 ◽  
Vol 179 (1) ◽  
pp. 88-106 ◽  
Author(s):  
Li-Jie Zhou ◽  
Chun-Ling Zhang ◽  
Rui-Fen Zhang ◽  
Gui-Luan Wang ◽  
Yuan-Yuan Li ◽  
...  

2004 ◽  
Vol 11 (10) ◽  
pp. 984-991 ◽  
Author(s):  
Andrea Pichler ◽  
Puck Knipscheer ◽  
Hisato Saitoh ◽  
Titia K Sixma ◽  
Frauke Melchior
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document